mcp-server-ragdocs
A Model Context Protocol server for fetching and storing documentation in a vector database, enabling semantic search and retrieval to augment LLM capabilities with relevant documentation context.
A Model Context Protocol server for fetching and storing documentation in a vector database, enabling semantic search and retrieval to augment LLM capabilities with relevant documentation context.
Qdrant module for Testcontainers
Adis CLI for interacting with Qdrant and Milvus databases.
A service hub for AI services
An MCP server for semantic documentation search and retrieval using vector databases to augment LLM capabilities.
TypeScript SDK for turbopuffer vector database API
This is a WebAssembly (WASM) port of the modified Barnes-Hut t-SNE algorithm that works with pre-computed distance vector. The original Rust implementation can be found [here](https://github.com/frjnn/bhtsne).
Retrieval Augmented Generation (RAG) and local GPT (text generation LLM - large language models) toolkit for machine learning (ML) apps with node-red
Qdrant vector search engine client library
Javascript API for qdrant
OpenAPI client for Qdrant
Een MCP server voor interactie met Qdrant vectordatabase
Add markup for the search modal popup:
A TypeScript/JavaScript module for implementing Retrieval-Augmented Generation (RAG) using Qdrant vector database, Google's Generative AI embeddings, and Groq LLM.
Pipedream Qdrant Components
Genkit AI framework plugin for the Qdrant vector database.
Gatsby plugin to recommend articles based on OpenAI embeddings and Qdrant vector search.
An MCP server for semantic documentation search and retrieval using vector databases to augment LLM capabilities.
Model Context Protocol server with multi-agent orchestration, vector database integration, and monitoring capabilities
一个MCP服务器实现,提供通过向量搜索检索和处理文档的工具,使得AI助手可以在其响应中增加相关文档内容。