@amitdeshmukh/ax-crew v3.11.1

AxCrew - A Crew of AI Agents (built with AxLLM)
This repo simplifies development of AxLLM AI Agents by using config to instantiate agents. This means you can write a library of functions, and quickly invoke AI agents to use them using a simple configuration file.
Features
- Crew Configuration: Define a crew of agents in a JSON file. (see agentConfig.json as an example)
- State Management: Share state across agents in a crew, as well as with functions used by those agents.
- Task Execution: Plan and execute tasks using agents in the crew.
- Streaming Support: Stream agent responses in real-time for better user experience and faster feedback.
- Model Context Protocol (MCP): Support for MCP to allow agents to use MCP servers.
Getting Started
Installation
Install this package:
npm install @amitdeshmukh/ax-crewAxLLM is a peer dependency, so you will need to install it separately.
npm install @ax-llm/axTypeScript Support
This package includes TypeScript declarations and provides full type safety. Here's how to use it with TypeScript:
import { AxCrew, AxCrewFunctions, FunctionRegistryType, StateInstance } from '@amitdeshmukh/ax-crew';
import type { AxFunction } from '@ax-llm/ax';
// Type-safe configuration
const config = {
crew: [{
name: "Planner",
description: "Creates a plan to complete a task",
signature: "task:string \"a task to be completed\" -> plan:string \"a plan to execute the task\"",
provider: "google-gemini",
providerKeyName: "GEMINI_API_KEY",
ai: {
model: "gemini-1.5-pro",
temperature: 0
}
}]
};
// Create custom functions with type safety
class MyCustomFunction {
constructor(private state: Record<string, any>) {}
toFunction(): AxFunction {
return {
name: 'MyCustomFunction',
description: 'Does something useful',
parameters: {
type: 'object',
properties: {
inputParam: { type: 'string', description: "input to the function" }
}
},
func: async ({ inputParam }) => {
// Implementation
return inputParam;
}
};
}
}
// Type-safe function registry
const myFunctions: FunctionRegistryType = {
MyCustomFunction
};
// Create crew with type checking
const crew = new AxCrew(config, myFunctions);
// Set and get state
crew.state.set('key', 'value');
const value: string = crew.state.get('key');
// Add agents to the crew
const agents = crew.addAgentsToCrew(['Planner']);
const planner = agents?.get('Planner');
if (planner) {
// Agent usage with function overloads
// Direct usage - AI config from agent construction is used
const response = await planner.forward({ task: "Plan something" });
// Sub-agent usage - when used by another agent (AI is ignored and agent's own config is used)
const subAgentResponse = await planner.forward(ai, { task: "Plan something" });
const cost = planner.getUsageCost();
if (cost) {
console.log(`Total cost: $${cost.totalCost}`);
console.log(`Total tokens: ${cost.tokenMetrics.totalTokens}`);
}
}Key TypeScript features:
- Full type definitions for all classes, methods, and properties
- Type-safe configuration objects
- Proper typing for function registries and custom functions
- Type checking for state management
- Comprehensive type safety for agent operations and responses
- Usage cost tracking with proper types
Environment Setup
Refer to the .env.example file for the required environment variables. These will need to be set in the environment where the agents are run.
Usage
Initializing a Crew
A Crew is a team of agents that work together to achieve a common goal. You can configure your crew in two ways:
- Using a JSON configuration file that defines the agents in the crew, along with their individual configurations.
- Directly passing a JSON object with the crew configuration.
Using a Configuration File
See agentConfig.json for an example configuration file.
// Import the AxCrew class
import { AxCrew } from '@amitdeshmukh/ax-crew';
// Create a new instance of AxCrew using a config file
const configFilePath = './agentConfig.json';
const crew = new AxCrew(configFilePath);Using a Direct Configuration Object
You can also pass the configuration directly as a JSON object:
// Import the AxCrew class
import { AxCrew } from '@amitdeshmukh/ax-crew';
// Create the configuration object
const config = {
crew: [
{
name: "Planner",
description: "Creates a plan to complete a task",
signature: "task:string \"a task to be completed\" -> plan:string \"a plan to execute the task in 5 steps or less\"",
provider: "google-gemini",
providerKeyName: "GEMINI_API_KEY",
ai: {
model: "gemini-1.5-flash",
temperature: 0
},
options: {
debug: false
}
}
// ... more agents
]
};
// Create a new instance of AxCrew using the config object
const crew = new AxCrew(config);Both methods support the same configuration structure and options. Choose the one that best fits your use case:
- Use a configuration file when you want to:
- Keep your configuration separate from your code
- Share configurations across different projects
- Version control your configurations
- Use a direct configuration object when you want to:
- Generate configurations dynamically
- Modify configurations at runtime
- Keep everything in one file for simpler projects
Agent Examples
You can provide examples to guide the behavior of your agents using the examples field in the agent configuration. Examples help the agent understand the expected input/output format and improve its responses.
{
"name": "MathTeacher",
"description": "Solves math problems with step by step explanations",
"signature": "problem:string \"a math problem to solve\" -> solution:string \"step by step solution with final answer\"",
"provider": "google-gemini",
"providerKeyName": "GEMINI_API_KEY",
"ai": {
"model": "gemini-1.5-pro",
"temperature": 0
},
"examples": [
{
"problem": "what is the square root of 144?",
"solution": "Let's solve this step by step:\n1. The square root of a number is a value that, when multiplied by itself, gives the original number\n2. For 144, we need to find a number that when multiplied by itself equals 144\n3. 12 × 12 = 144\nTherefore, the square root of 144 is 12"
},
{
"problem": "what is the cube root of 27?",
"solution": "Let's solve this step by step:\n1. The cube root of a number is a value that, when multiplied by itself twice, gives the original number\n2. For 27, we need to find a number that when cubed equals 27\n3. 3 × 3 × 3 = 27\nTherefore, the cube root of 27 is 3"
}
]
}The examples should:
- Match the input/output signature of your agent
- Demonstrate the desired format and style of responses
- Include edge cases or specific patterns you want the agent to learn
- Be clear and concise while showing the expected behavior
Examples are particularly useful for:
- Teaching agents specific response formats
- Demonstrating step-by-step problem-solving approaches
- Showing how to handle edge cases
- Maintaining consistent output styles across responses
Function Registry
Functions (aka Tools) are the building blocks of agents. They are used to perform specific tasks, such as calling external APIs, databases, or other services.
The FunctionRegistry is a central place where all the functions that agents can use are registered. This allows for easy access and management of functions across different agents in the crew.
To use the FunctionRegistry, you need to either:
- import and use the built-in functions from the
@amitdeshmukh/ax-crewpackage, or - bring your own functions before initializing
AxCrew.
Here's an example of how to set up the FunctionRegistry with built-in functions:
import { AxCrewFunctions } from '@amitdeshmukh/ax-crew';
const crew = new AxCrew(configFilePath, AxCrewFunctions);if you want to bring your own functions, you can do so by creating a new instance of FunctionRegistry and passing it to the AxCrew constructor.
import { FunctionRegistryType } from '@amitdeshmukh/ax-crew';
const myFunctions: FunctionRegistryType = {
GoogleSearch: googleSearchInstance.toFunction()
};
const crew = new AxCrew(configFilePath, myFunctions);Adding Agents to the Crew
There are three ways to add agents to your crew, each offering different levels of control:
Method 1: Add All Agents Automatically
This is the simplest method that automatically handles all dependencies:
// Initialize all agents defined in the config
await crew.addAllAgents();
// Get agent instances
const planner = crew.agents?.get("Planner");
const manager = crew.agents?.get("Manager");This method:
- Reads all agents from your configuration
- Automatically determines the correct initialization order based on dependencies
- Initializes all agents in the proper sequence
- Throws an error if there are circular dependencies
Method 2: Add Multiple Agents with Dependencies
This method allows you to initialize a subset of agents while still handling dependencies automatically:
// Add multiple agents - dependencies will be handled automatically
await crew.addAgentsToCrew(['Manager', 'Planner', 'Calculator']);
// Or add them in multiple steps - order doesn't matter as dependencies are handled
await crew.addAgentsToCrew(['Calculator']); // Will be initialized first
await crew.addAgentsToCrew(['Manager']); // Will initialize Planner first if it's a dependencyThis method:
- Takes an array of agent names you want to initialize
- Automatically handles dependencies even if not explicitly included
- Initializes agents in the correct order regardless of the order specified
- Throws an error if required dependencies are missing or if there are circular dependencies
Method 3: Add Individual Agents
This method gives you the most control but requires manual dependency management:
// Add agents one by one - you must handle dependencies manually
await crew.addAgent('Calculator'); // Add base agent first
await crew.addAgent('Planner'); // Then its dependent
await crew.addAgent('Manager'); // Then agents that depend on bothThis method:
- Gives you full control over the initialization process
- Requires you to handle dependencies manually
- Throws an error if you try to initialize an agent before its dependencies
Dependency Handling
The crew system automatically handles agent dependencies in the following ways:
- Explicit Dependencies: Defined in the agent config using the
agentsfield:
{
name: "Manager",
// ... other config ...
agents: ["Planner", "Calculator"] // Manager depends on these agents
}Initialization Order:
- Base agents (no dependencies) are initialized first
- Dependent agents are initialized only after their dependencies
- Circular dependencies are detected and reported
Error Handling:
- Missing dependencies are reported with clear error messages
- Circular dependencies are detected and reported
- Invalid agent names or configurations are caught early
State Management:
- All initialized agents within a crew share the same state
- Dependencies can access and modify shared state
- State persists across all initialization methods
Choose the method that best fits your needs:
- Use
addAllAgents()for simple cases where you want all agents - Use
addAgentsToCrew()when you need a subset of agents with automatic dependency handling - Use
addAgent()when you need fine-grained control over the initialization process
State Management
The StatefulAxAgent class in src/agents/index.js allows for shared state functionality across agents. Sub-agents can be added to an agent to create complex behaviors. All agents in the crew have access to the shared state. State can also be shared with functions that are passed to the agents. To do this, pass the state object as an argument to the function class as shown here https://axllm.dev/guides/functions-1/
// Set some state (key/value) for this crew
crew.state.set('name', 'Crew1');
crew.state.set('location', 'Earth');
// Get the state for the crew
crew.state.get('name'); // 'Crew1'
crew.state.getAll(); // { name: 'Crew1', location: 'Earth' }State can also be set/get by individual agents in the crew. This state is shared with all agents. It is also passed to any functions expressed as a class in FunctionsRegistry.
Planner.state.set('plan', 'Fly to Mars');
console.log(Manager.state.getAll()); // { name: 'Crew1', location: 'Earth', plan: 'Fly to Mars' }Example Agent task
An example of how to complete a task using the agents is shown below. The Planner agent is used to plan the task, and the Manager agent is used to execute the task.
import { AxCrew, AxCrewFunctions } from '@amitdeshmukh/ax-crew';
// Create a new instance of AxCrew
const crew = new AxCrew('./agentConfig.json', AxCrewFunctions);
crew.addAgentsToCrew(['Planner', 'Calculator', 'Manager']);
// Get agent instances
const Planner = crew.agents.get("Planner");
const Manager = crew.agents.get("Manager");
// User query
const userQuery = "whats the square root of the number of days between now and Christmas";
console.log(`\n\nQuestion: ${userQuery}`);
// Forward the user query to the agents
const planResponse = await Planner.forward({ task: userQuery });
const managerResponse = await Manager.forward({ question: userQuery, plan: planResponse.plan });
// Get and print the plan and answer from the agents
const plan = planResponse.plan;
const answer = managerResponse.answer;
console.log(`\n\nPlan: ${plan}`);
console.log(`\n\nAnswer: ${answer}`);Streaming Responses
The package supports streaming responses from agents, allowing you to receive and process agent outputs in real-time. This is particularly useful for long-running tasks or when you want to provide immediate feedback to users.
import { AxCrew, AxCrewFunctions } from '@amitdeshmukh/ax-crew';
// Create and initialize crew as shown above
const crew = new AxCrew('./agentConfig.json', AxCrewFunctions);
await crew.addAgentsToCrew(['Planner']);
const planner = crew.agents.get("Planner");
// Stream responses using the forward method
await planner.forward(
{ task: "Create a detailed plan for a website" },
{
onStream: (chunk) => {
// Process each chunk of the response as it arrives
console.log('Received chunk:', chunk);
}
}
);
// You can also use streaming with sub-agents
await planner.forward(
ai,
{ task: "Create a detailed plan for a website" },
{
onStream: (chunk) => {
process.stdout.write(chunk);
}
}
);Key streaming features:
- Real-time response processing
- Support for both direct and sub-agent usage
- Customizable stream handling through callbacks
- Compatible with all agent types and configurations
- Maintains cost tracking and state management functionality
Model Context Protocol (MCP) Support
AxCrew provides built-in support for the Model Context Protocol (MCP), allowing agents to connect to and use MCP servers for enhanced functionality. MCP enables agents to access external tools, data sources, and services in a standardized way.
Supported Transport Types
AxCrew supports three MCP transport types, replacing the deprecated AxMCPHTTPTransport:
- AxMCPStdioTransport - For standard input/output communication
- AxMCPHTTPSSETransport - For HTTP with Server-Sent Events
- AxMCPStreambleHTTPTransport - For streamable HTTP communication
Configuration
Add MCP servers to your agent configuration using the mcpServers field:
STDIO Transport Configuration
For MCP servers that communicate via standard input/output:
{
"name": "DataAnalyst",
"description": "Analyzes data using MCP tools",
"signature": "data:string -> analysis:string",
"provider": "openai",
"providerKeyName": "OPENAI_API_KEY",
"ai": {
"model": "gpt-4",
"temperature": 0
},
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"],
"env": {
"NODE_ENV": "production"
}
},
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"]
}
}
}HTTP SSE Transport Configuration
For MCP servers accessible via HTTP with Server-Sent Events:
{
"name": "WebAnalyst",
"description": "Analyzes web content using MCP tools",
"signature": "url:string -> analysis:string",
"provider": "anthropic",
"providerKeyName": "ANTHROPIC_API_KEY",
"ai": {
"model": "claude-3-haiku",
"temperature": 0
},
"mcpServers": {
"api-server": {
"sseUrl": "https://api.example.com/mcp/sse"
}
}
}Streamable HTTP Transport Configuration
For MCP servers that support streamable HTTP communication:
{
"name": "StreamAnalyst",
"description": "Processes streaming data using MCP tools",
"signature": "stream:string -> results:string",
"provider": "google-gemini",
"providerKeyName": "GEMINI_API_KEY",
"ai": {
"model": "gemini-1.5-pro",
"temperature": 0
},
"mcpServers": {
"stream-processor": {
"mcpEndpoint": "http://localhost:3002/stream",
"options": {
"authorization": "Bearer ey.JhbGciOiJkaXIiLCJlbmMiOiJBMjU2R0NNIn0..-1234567890.1234567890",
"headers": { // Custom headers to include with all HTTP requests Note: Content-Type, Accept, and Mcp-Session-Id are managed automatically
"X-Custom-Header": "custom-value"
}
}
}
}
}Mixed Transport Configuration
You can use multiple transport types within the same agent:
{
"name": "MultiModalAgent",
"description": "Uses multiple MCP servers with different transports",
"signature": "task:string -> result:string",
"provider": "openai",
"providerKeyName": "OPENAI_API_KEY",
"ai": {
"model": "gpt-4",
"temperature": 0
},
"mcpServers": {
"local-files": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/workspace"]
},
"web-search": {
"sseUrl": "http://localhost:3001/sse"
},
"data-stream": {
"mcpEndpoint": "http://localhost:3002/stream"
}
}
}MCP Server Examples
Here are some popular MCP servers you can use:
Filesystem Server (STDIO):
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/allowed/path"]
}Brave Search Server (STDIO):
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_API_KEY": "your-brave-api-key"
}
}GitHub Server (STDIO):
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "your-github-token"
}
}PostgreSQL Server (STDIO):
"postgres": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-postgres"],
"env": {
"POSTGRES_CONNECTION_STRING": "postgresql://user:pass@localhost/db"
}
}Usage in Code
MCP functions are automatically available to agents once the servers are configured:
import { AxCrew } from '@amitdeshmukh/ax-crew';
// Create crew with MCP-enabled agents
const crew = new AxCrew('./agentConfig.json');
await crew.addAgent('DataAnalyst'); // Agent with MCP servers configured
const analyst = crew.agents.get('DataAnalyst');
// The agent can now use MCP functions automatically
const response = await analyst.forward({
data: "Please analyze the sales data in /workspace/sales.csv"
});
// The agent will automatically use the filesystem MCP server to read the file
// and any other configured MCP tools for analysisBest Practices
Environment Variables: Store sensitive information like API keys in environment variables rather than in the configuration file.
Path Security: For filesystem servers, always specify allowed paths to prevent unauthorized file access.
Server Health: Implement health checks for HTTP-based MCP servers to ensure reliability.
Error Handling: MCP server failures are handled gracefully - agents will continue to work with available tools.
Debugging: Enable debug mode to see MCP server initialization and communication logs:
{
"debug": true,
"mcpServers": { ... }
}Migration from Deprecated Transport
If you're upgrading from the deprecated AxMCPHTTPTransport, update your configuration:
Before (deprecated):
"mcpServers": {
"my-server": {
"sseUrl": "http://localhost:3001/sse"
}
}After (current):
The configuration remains the same - the transport type is automatically detected and AxMCPHTTPSSETransport is used for sseUrl configurations. No changes to your configuration files are needed.
For new streamable HTTP servers, use:
"mcpServers": {
"my-stream-server": {
"mcpEndpoint": "http://localhost:3002/stream",
"options": {
"timeout": 30000
}
}
}Tracking Usage Costs
The package provides precise cost tracking capabilities for monitoring API usage across individual agents and the entire crew. Costs are calculated using high-precision decimal arithmetic to ensure accuracy.
// After running an agent's forward method
const response = await Planner.forward({ task: userQuery });
// Get individual agent costs
const agentCost = Planner.getLastUsageCost();
console.log(agentCost);
/* Output example:
{
promptCost: "0.0003637500000",
completionCost: "0.0006100000000",
totalCost: "0.0009737500000",
tokenMetrics: {
promptTokens: 291,
completionTokens: 122,
totalTokens: 413
}
}
*/
// Get cumulative costs for the agent
const cumulativeCost = Planner.getAccumulatedCosts();
console.log(cumulativeCost);
/* Output example:
{
promptCost: "0.0003637500000",
completionCost: "0.0006100000000",
totalCost: "0.0009737500000",
tokenMetrics: {
promptTokens: 291,
completionTokens: 122,
totalTokens: 413
}
}
*/
// Get aggregated costs for all agents in the crew
const crewCosts = crew.getAggregatedCosts();
console.log(crewCosts);
/* Output example:
{
totalCost: "0.0025482500000",
byAgent: {
"Planner": { ... },
"Calculator": { ... },
"Manager": { ... }
},
aggregatedMetrics: {
promptTokens: 850,
completionTokens: 324,
totalTokens: 1174,
promptCost: "0.0010625000000",
completionCost: "0.0014857500000"
}
}
*/
// Reset cost tracking if needed
crew.resetCosts();Cost tracking features:
- High-precision decimal calculations using decimal.js
- Per-agent cost breakdown
- Aggregated crew-wide metrics
- Token usage statistics
- Support for different pricing tiers per model
- Persistent cost tracking across multiple agent runs
Changelog
See CHANGELOG.md for a list of changes and version updates.
11 months ago
5 months ago
6 months ago
11 months ago
11 months ago
11 months ago
6 months ago
5 months ago
7 months ago
7 months ago
10 months ago
8 months ago
9 months ago
11 months ago
5 months ago
11 months ago
11 months ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago