0.1.7 • Published 5 months ago
@chroma-core/together-ai v0.1.7
Together AI Embedding Function for Chroma
This package provides a Together AI embedding provider for Chroma.
Installation
npm install @chroma-core/together-ai
Usage
import { ChromaClient } from 'chromadb';
import { TogetherAIEmbeddingFunction } from '@chroma-core/together-ai';
// Initialize the embedder
const embedder = new TogetherAIEmbeddingFunction({
apiKey: 'your-api-key', // Or set TOGETHER_API_KEY env var
modelName: 'togethercomputer/m2-bert-80M-8k-retrieval',
});
// Create a new ChromaClient
const client = new ChromaClient({
path: 'http://localhost:8000',
});
// Create a collection with the embedder
const collection = await client.createCollection({
name: 'my-collection',
embeddingFunction: embedder,
});
// Add documents
await collection.add({
ids: ["1", "2", "3"],
documents: ["Document 1", "Document 2", "Document 3"],
});
// Query documents
const results = await collection.query({
queryTexts: ["Sample query"],
nResults: 2,
});
Configuration
Set your Together AI API key as an environment variable:
export TOGETHER_API_KEY=your-api-key
Get your API key from Together AI.
Configuration Options
- apiKey: Your Together AI API key (or set via environment variable)
- apiKeyEnvVar: Environment variable name for API key (default:
TOGETHER_API_KEY
) - modelName: Model to use for embeddings (required)
Supported Models
Popular embedding models available through Together AI:
togethercomputer/m2-bert-80M-8k-retrieval
togethercomputer/m2-bert-80M-32k-retrieval
WhereIsAI/UAE-Large-V1
BAAI/bge-large-en-v1.5
BAAI/bge-base-en-v1.5
Check the Together AI documentation for the complete list of available embedding models and their specifications.
Features
- High Performance: Optimized inference infrastructure for fast embeddings
- Multiple Models: Access to various state-of-the-art embedding models
- Scalable: Built for production workloads with reliable uptime