3.0.0 • Published 5 years ago

@datafire/aiception v3.0.0

Weekly downloads
1
License
MIT
Repository
github
Last release
5 years ago

@datafire/aiception

Client library for AIception Interactive

Installation and Usage

npm install --save @datafire/aiception
let aiception = require('@datafire/aiception').create({
  username: "",
  password: ""
});

.then(data => {
  console.log(data);
});

Description

Here you can play & test & prototype all the endpoints using just your browser! Go ahead!

Actions

adult_content.post

Creates a new adult_content task that tells the if the image has nudity or sexual content.

aiception.adult_content.post({
  "body": null
}, context)

Input

  • input object
    • body required object
      • async boolean
      • image_url required string

Output

adult_content.taskId.get

Gets the adult_content task.

aiception.adult_content.taskId.get({
  "taskId": ""
}, context)

Input

  • input object
    • taskId required string: An internal id for the task

Output

artistic_image.post

Given an image content and a style image create a new stylized image of the content.

aiception.artistic_image.post({
  "body": null
}, context)

Input

  • input object
    • body required object
      • async boolean
      • image_url required string
      • style_url required string

Output

artistic_image.taskId.get

The artistic_image will have the urls of the stylized images.

aiception.artistic_image.taskId.get({
  "taskId": ""
}, context)

Input

  • input object
    • taskId required string: An internal id for the task

Output

detect_object.post

Creates a new detect object task that recognizes the object in the image.

aiception.detect_object.post({
  "body": null
}, context)

Input

  • input object
    • body required object
      • async boolean
      • image_url required string

Output

detect_object.taskId.get

Gets the detect_object task.

aiception.detect_object.taskId.get({
  "taskId": ""
}, context)

Input

  • input object
    • taskId required string: An internal id for the task

Output

face.post

Get a list of all the locations of the faces in the image.

aiception.face.post({
  "body": null
}, context)

Input

  • input object
    • body required object
      • async boolean
      • image_url required string

Output

face.taskId.get

Gets the face task.

aiception.face.taskId.get({
  "taskId": ""
}, context)

Input

  • input object
    • taskId required string: An internal id for the task

Output

face_age.post

Creates a new face age task that approximates the age of the person in the image.

aiception.face_age.post({
  "body": null
}, context)

Input

  • input object
    • body required object
      • async boolean
      • image_url required string

Output

face_age.taskId.get

Gets the face_age task.

aiception.face_age.taskId.get({
  "taskId": ""
}, context)

Input

  • input object
    • taskId required string: An internal id for the task

Output

Definitions

AgeAnswer

  • AgeAnswer object
    • max integer
    • min integer
    • score number

Person

  • Person object
    • firstName string
    • lastName string
    • username required string

Persons

Task

  • Task object
    • answer number: The answer you are looking for.
    • image_url required string: The url of the image that will be processed.
    • this_url string: Use this url to get this task.