3.0.0 • Published 5 years ago
@datafire/symanto v3.0.0
@datafire/symanto
Client library for Psycholinguistic Text Analytics
Installation and Usage
npm install --save @datafire/symantolet symanto = require('@datafire/symanto').create({
apiKeyHeader: ""
});
.then(data => {
console.log(data);
});Description
We aim to provide the deepest understanding of people through psychology & AI
Actions
communication
Identify the purpose and writing style of a written text.
Supported Languages: ar, de, en, es, fr, it, nl, pt, ru, tr, zh
Returned labels:
- action-seeking
- fact-oriented
- information-seeking
- self-revealing
symanto.communication({}, context)Input
- input
object- all
boolean - body PostRequest
- all
Output
- output PredictionResults
emotion
Detect the emotions of the text.
Supported Langauges: en, de, es
Returned labels:
- anger
- joy
- love
- sadness
- surprise
- uncategorized
symanto.emotion({}, context)Input
- input
object- all
boolean - body PostRequest
- all
Output
- output PredictionResults
language_detection.post
Identifies what language a text is written in. Only languages that our API supports can be analyzed.
Returned labels:
- language_code of the detected language
symanto.language_detection.post({}, context)Input
- input
object
Output
- output LanguageDetectionResponse
personality
Predict the personality trait of author of any written text.
Supported Languages: ar, de, en, es, fr, it, nl, pt, ru, tr, zh
Returned labels:
- emotional
- rational
symanto.personality({}, context)Input
- input
object- all
boolean - body PostRequest
- all
Output
- output PredictionResults
sentiment
Evaluate the overall tonality of the text.
Supported Languages: en, de, es
Returned labels:
- positive
- negative
symanto.sentiment({}, context)Input
- input
object- all
boolean - body PostRequest
- all
Output
- output PredictionResults
topic_sentiment.post
Extracts topics and sentiments and relates them.
symanto.topic_sentiment.post({}, context)Input
- input
object- domain
string(values: Ecom, Employee): Provide analysis domain for better extraction (optional) - body PostRequest
- domain
Output
- output TopicSentimentResponse
Definitions
LanguageDetection
- LanguageDetection
object- id
string: id of the text. - text required
string: the text itself.
- id
LanguageDetectionRequest
- LanguageDetectionRequest
array- items LanguageDetection
LanguageDetectionResponse
- LanguageDetectionResponse
array- items LanguagePredicted
LanguagePredicted
- LanguagePredicted
object- detected_language required
string: the detected language_code corresponding to the input text. - id
string: id of the post.
- detected_language required
Post
- Post
object- id
string: id of the post. - language required
string: language_code of the text. - text required
string: the text to be analysed.
- id
PostPredicted
- PostPredicted
object- id
string: id of the post. - predictions required
array: the list of predictions.- items Prediction
- id
PostRequest
- Posts
array- items Post
Prediction
- Prediction
object- prediction required
string: the predicted label. - probability required
number: the probability of the predicted label.
- prediction required
PredictionResults
- Prediction Results
array- items PostPredicted
Sentiment
- Sentiment
object- category
string - end
integer - negationTerm
string - parentCategory
string - positive
boolean - scale
number - start
integer - text
string
- category
Topic
- Topic
object- category
string - end
integer - polarity
number - start
integer - text
string - topic
string
- category
TopicSentiment
TopicSentimentOutput
- TopicSentimentOutput
object- id
string - language
string - sentiments
array- items Sentiment
- text
string - topicSentiments
array- items TopicSentiment
- topics
array- items Topic
- id
TopicSentimentResponse
- TopicSentimentResponse
array- items TopicSentimentOutput
ValidationError
- ValidationError
object- loc required
array- items
string
- items
- msg required
string - type required
string
- loc required
ValidationErrors
- ValidationErrors
object- detail
array- items ValidationError
- detail
3.0.0
5 years ago