3.0.0 • Published 5 years ago

@datafire/symanto v3.0.0

Weekly downloads
1
License
MIT
Repository
github
Last release
5 years ago

@datafire/symanto

Client library for Psycholinguistic Text Analytics

Installation and Usage

npm install --save @datafire/symanto
let symanto = require('@datafire/symanto').create({
  apiKeyHeader: ""
});

.then(data => {
  console.log(data);
});

Description

We aim to provide the deepest understanding of people through psychology & AI

Actions

communication

Identify the purpose and writing style of a written text.

Supported Languages: ar, de, en, es, fr, it, nl, pt, ru, tr, zh

Returned labels:

  • action-seeking
  • fact-oriented
  • information-seeking
  • self-revealing
symanto.communication({}, context)

Input

Output

emotion

Detect the emotions of the text.

Supported Langauges: en, de, es

Returned labels:

  • anger
  • joy
  • love
  • sadness
  • surprise
  • uncategorized
symanto.emotion({}, context)

Input

Output

language_detection.post

Identifies what language a text is written in. Only languages that our API supports can be analyzed.

Returned labels:

  • language_code of the detected language
symanto.language_detection.post({}, context)

Input

Output

personality

Predict the personality trait of author of any written text.

Supported Languages: ar, de, en, es, fr, it, nl, pt, ru, tr, zh

Returned labels:

  • emotional
  • rational
symanto.personality({}, context)

Input

Output

sentiment

Evaluate the overall tonality of the text.

Supported Languages: en, de, es

Returned labels:

  • positive
  • negative
symanto.sentiment({}, context)

Input

Output

topic_sentiment.post

Extracts topics and sentiments and relates them.

symanto.topic_sentiment.post({}, context)

Input

  • input object
    • domain string (values: Ecom, Employee): Provide analysis domain for better extraction (optional)
    • body PostRequest

Output

Definitions

LanguageDetection

  • LanguageDetection object
    • id string: id of the text.
    • text required string: the text itself.

LanguageDetectionRequest

LanguageDetectionResponse

LanguagePredicted

  • LanguagePredicted object
    • detected_language required string: the detected language_code corresponding to the input text.
    • id string: id of the post.

Post

  • Post object
    • id string: id of the post.
    • language required string: language_code of the text.
    • text required string: the text to be analysed.

PostPredicted

  • PostPredicted object
    • id string: id of the post.
    • predictions required array: the list of predictions.

PostRequest

  • Posts array

Prediction

  • Prediction object
    • prediction required string: the predicted label.
    • probability required number: the probability of the predicted label.

PredictionResults

Sentiment

  • Sentiment object
    • category string
    • end integer
    • negationTerm string
    • parentCategory string
    • positive boolean
    • scale number
    • start integer
    • text string

Topic

  • Topic object
    • category string
    • end integer
    • polarity number
    • start integer
    • text string
    • topic string

TopicSentiment

TopicSentimentOutput

  • TopicSentimentOutput object

TopicSentimentResponse

ValidationError

  • ValidationError object
    • loc required array
      • items string
    • msg required string
    • type required string

ValidationErrors