0.0.17 • Published 10 months ago

@forge-ml/rag v0.0.17

Weekly downloads
-
License
ISC
Repository
-
Last release
10 months ago

Forge RAG (Retrieval-Augmented Generation) Package

Overview

This package provides a flexible and efficient implementation of Retrieval-Augmented Generation (RAG) for Node.js applications. It offers tools for document chunking, embedding generation, vector storage, and similarity search, enabling developers to build powerful RAG systems.

Features

  • Document chunking with various strategies
  • Embedding generation using OpenAI or Nomic AI
  • Vector storage and retrieval using Redis
  • Flexible querying and similarity search
  • Utility functions for text preprocessing and token estimation

Installation

npm install @forge-ml/rag

Quick Start

import { createRagger, OpenAIEmbedder, RedisVectorStore } from "@forge-ml/rag";

const embedder = new OpenAIEmbedder({ apiKey: "your-openai-api-key" });
const vectorStore = new RedisVectorStore("redis://localhost:6379");

const ragger = createRagger(embedder, vectorStore);

// Initialize a document
const chunks = await ragger.initializeDocument("Your document text here");

// Query the document
const results = await ragger.query("Your query here");

Core Components

Embedder

The package supports two embedding providers:

  1. OpenAI Embedder
const embedder = new OpenAIEmbedder({
  type: "openai",
  apiKey: process.env.OPENAI_API_KEY,
});
  1. Nomic Embedder
const embedder = new NomicEmbedder({
  type: "nomic",
  apiKey: process.env.NOMIC_API_KEY,
});

Vector Store

The package uses Redis as the vector store:

const vectorStore = new RedisVectorStore(process.env.REDIS_URL);

API Reference

createRagger(embedder: Embedder, vectorStore: VectorStore)

Creates a new RAG instance with the specified embedder and vector store.

ragger.initializeDocument(text: string, options?: InitializeDocumentOptions)

Chunks the input text and stores the embeddings in the vector store.

ragger.query(query: string)

Performs a similarity search based on the input query and returns relevant chunks.

Configuration

Redis Setup

To set up the Redis vector store, use the provided Docker Compose file:

version: '3.8'

services:
  redis:
    image: redis/redis-stack:latest
    container_name: redis
    ports:
      - "6379:6379"
    volumes:
      - redis_data:/data
    command: >
      redis-server
      --appendonly yes
      --protected-mode no
      --loadmodule /opt/redis-stack/lib/redisearch.so
      --loadmodule /opt/redis-stack/lib/rejson.so
    restart: always

volumes:
  redis_data:
    driver: local

Run the following script to start the Redis container:

#!/bin/bash

# Function to check if Docker is running
check_docker() {
    if ! docker info > /dev/null 2>&1; then
        echo "Docker is not running. Please start Docker and try again."
        exit 1
    fi
}

# Function to spin up the vector store
spin_up_vector_store() {
    echo "Spinning up the vector store..."
    docker compose -f docker/redis.yml up -d
    if [ $? -eq 0 ]; then
        echo "Vector store is now running."
    else
        echo "Failed to start the vector store. Please check the Docker logs for more information."
        exit 1
    fi
}

# Main execution
check_docker
spin_up_vector_store

Contributing

Contributions are welcome! Please refer to the CONTRIBUTING.md file for guidelines.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • OpenAI for their embedding API
  • Nomic AI for their embedding capabilities
  • Redis for providing an efficient vector store solution
0.0.17

10 months ago

0.0.15

10 months ago

0.0.16

10 months ago

0.0.13

11 months ago

0.0.14

11 months ago

0.0.12

11 months ago

0.0.11

11 months ago

0.0.10

11 months ago

0.0.9

11 months ago

0.0.8

11 months ago

0.0.7

11 months ago

0.0.6

11 months ago

0.0.5

11 months ago

0.0.4

11 months ago

0.0.3

11 months ago