@guillehr2/excel-mcp-server v1.0.7
Excel MCP Master Server 📊
A unified and comprehensive Model Context Protocol (MCP) server for complete Excel file manipulation. This single server provides all the functionality needed for reading, writing, formatting, and analyzing Excel files through LLM interactions.
🌟 Features
Unified Architecture
- 🎯 Single Server: All functionality in one place -
master_excel_mcp.py - 📖 Complete Reading: Data extraction, exploration, and analysis
- ✍️ Advanced Writing: Professional formatting and styling
- 📋 Workbook Management: Full lifecycle operations
- 📈 Rich Visualizations: Charts, tables, pivot tables, and dashboards
- 🔄 Automation: Templates, imports, exports, and batch operations
- 🎨 Professional Output: Auto-formatting and styling for publication-ready documents
Key Capabilities
📊 Data Operations
- Read and write Excel files with full formatting support
- Create professional tables with automatic styling
- Generate charts and visualizations
- Import from CSV, JSON, and SQL sources
- Export to multiple formats (CSV, JSON, PDF)
🎨 Professional Formatting
- Automatic column width adjustment
- Rich text formatting and styling
- Professional color schemes and themes
- Publication-ready document generation
🏗️ Advanced Features
- Dynamic dashboards with multiple visualizations
- Template-based report generation
- Data filtering and analysis
- Pivot tables and advanced calculations
- Batch processing and automation
🚀 Quick Start
Installation
The easiest way to use Excel MCP Server is with npx (no installation required):
npx @guillehr2/excel-mcp-server@latestOr install globally:
npm install -g @guillehr2/excel-mcp-serverConfiguration
Add to your MCP client configuration (e.g., Claude Desktop):
Using npx (Recommended)
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@latest"
]
}
}
}Using specific version
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@1.0.3"
]
}
}
}Using global installation
{
"mcpServers": {
"excel-master": {
"command": "excel-mcp-server"
}
}
}Development mode
If you're developing or want to run from source:
{
"mcpServers": {
"excel-master": {
"command": "node",
"args": ["path/to/Excel-MCP-Server-Master/index.js"]
}
}
}🛠️ Available Tools
📁 Workbook Management
create_workbook_tool- Create new Excel filesopen_workbook_tool- Open existing filessave_workbook_tool- Save workbookslist_sheets_tool- List all worksheetsadd_sheet_tool- Add new worksheetsdelete_sheet_tool- Remove worksheetsrename_sheet_tool- Rename worksheets
✍️ Data Operations
write_sheet_data_tool- Write data arraysupdate_cell_tool- Update individual cellscreate_sheet_with_data_tool- Create sheet with data in one step
📊 Tables and Formatting
add_table_tool- Create professional Excel tablescreate_formatted_table_tool- Create and format tables in one step
📈 Charts and Visualizations
add_chart_tool- Create various chart typescreate_chart_from_data_tool- Generate charts from new data
🏗️ Advanced Features
create_dashboard_tool- Build dynamic dashboardscreate_report_from_template_tool- Template-based reportsupdate_report_tool- Update existing reportsimport_data_tool- Import from multiple sourcesexport_data_tool- Export to various formatsfilter_data_tool- Filter and analyze dataexport_single_sheet_pdf_tool- Export single sheet to PDFexport_sheets_pdf_tool- Export multiple sheets to PDF
💡 Usage Examples
Creating a Professional Report
# Create a new workbook with formatted data
result = create_formatted_table_tool(
file_path="sales_report.xlsx",
sheet_name="Q4 Sales",
start_cell="A1",
data=[
["Region", "Q4 Sales", "Growth %"],
["North", 125000, 15.2],
["South", 98000, 8.7],
["East", 156000, 22.1],
["West", 89000, -3.2]
],
table_name="Q4SalesData",
table_style="TableStyleMedium9",
formats={
"B2:B5": "#,##0", # Number format for sales
"C2:C5": "0.0%", # Percentage format
"A1:C1": {"bold": True, "fill_color": "366092"} # Header styling
}
)
# Add a chart based on the table data
chart_result = add_chart_tool(
file_path="sales_report.xlsx",
sheet_name="Q4 Sales",
chart_type="column",
data_range="A1:B5",
title="Q4 Sales by Region",
position="E2",
style="colorful-1"
)Building a Dynamic Dashboard
# Create a comprehensive dashboard
dashboard_result = create_dashboard_tool(
file_path="executive_dashboard.xlsx",
data={
"Data": [
["Month", "Revenue", "Expenses", "Profit"],
["Jan", 50000, 30000, 20000],
["Feb", 55000, 32000, 23000],
["Mar", 48000, 29000, 19000]
]
},
dashboard_config={
"tables": [
{
"sheet": "Dashboard",
"name": "MonthlyData",
"range": "Data!A1:D4",
"style": "TableStyleMedium9"
}
],
"charts": [
{
"sheet": "Dashboard",
"type": "line",
"data_range": "Data!A1:B4",
"title": "Revenue Trend",
"position": "E1",
"style": "dark-blue"
},
{
"sheet": "Dashboard",
"type": "column",
"data_range": "Data!A1:D4",
"title": "Monthly Comparison",
"position": "E15",
"style": "colorful-2"
}
]
}
)Data Import and Analysis
# Import data from multiple sources
import_result = import_data_tool(
excel_file="analysis.xlsx",
import_config={
"csv": [
{
"file_path": "sales_data.csv",
"sheet_name": "Sales",
"delimiter": ",",
"encoding": "utf-8"
}
],
"json": [
{
"file_path": "customer_data.json",
"sheet_name": "Customers",
"format": "records"
}
]
},
create_tables=True
)
# Filter and analyze the imported data
filtered_data = filter_data_tool(
file_path="analysis.xlsx",
sheet_name="Sales",
table_name="Table_Sales_1",
filters={
"Region": ["North", "South"],
"Sales": {"gt": 10000}
}
)🎨 Professional Features
Automatic Formatting
The server automatically applies professional formatting:
- Column width adjustment based on content length
- Row height optimization for wrapped text
- Professional color schemes for charts and tables
- Consistent styling throughout documents
Chart Styling
Extensive chart customization options:
- 50+ predefined styles (light, dark, colorful themes)
- Custom color palettes for brand consistency
- Professional layouts with proper spacing
- Multiple chart types: column, bar, line, pie, scatter, area
Template System
Create reports from templates:
- Reusable templates for consistent reporting
- Dynamic data substitution
- Automatic chart updates
- Format preservation
📋 Requirements
- Node.js 14.0 or higher
- Python 3.8 or higher
- Operating System: Windows, macOS, or Linux
Python dependencies are automatically installed on first run:
- fastmcp
- openpyxl
- pandas
- numpy
- matplotlib
- xlsxwriter
- xlrd
- xlwt
📚 Documentation
For detailed documentation, see:
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Setup
# Clone the repository
git clone https://github.com/guillehr2/Excel-MCP-Server-Master.git
cd Excel-MCP-Server-Master
# Install dependencies
npm install
pip install -r requirements.txt
# Run in development mode
node index.js🐛 Troubleshooting
Common Issues
- Python not found: Ensure Python 3.8+ is installed and in your PATH
- Dependencies fail to install: Try running with administrator privileges
- MCP client doesn't recognize the server: Restart your MCP client after configuration
For more help, see our troubleshooting guide or open an issue.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built with FastMCP
- Excel manipulation powered by openpyxl
- Data processing with pandas
- Published on npm for easy distribution
📊 Stats
Made with ❤️ for the MCP ecosystem
*If you find this project useful, please consider giving it a ⭐ on GitHub!
Created by Guillem Hermida | GitHub | Contact: qtmsuite@gmail.com*