2.0.0 • Published 7 months ago
@hastom/fixed-point v2.0.0
Library for operating with fixed point decimals
It's fully based on native BigInt and does not have any fallbacks (or dependencies)
As fast as pure bigint math
Install
npm i @hastom/fixed-point
Usage
Definition
import { FP, FixedPoint } from '@hastom/fixed-point'
const a = new FixedPoint(1_000n, 3n) // means 1.000, base = 1000, precision = 3
const b = FP(1.212) // means 1.212, base 1212, precision = 3
const c = FP([90_09, 2]) // means 90.09, base 9090, precision = 2
Math
import { FP, FixedPoint } from '@hastom/fixed-point'
const d = a.add(b) // result 2.212, base = 2212, precision = 3
const e = a.sub(c) // result -89.09, base -8909, precision = 3
const f = b.mul(c) // result 109.189, base 109189, precision = 3
const g = c.div(b) // result 74.33, base 7433, precision = 2
const h = e.neg() // result 89.09, base 8909, precision = 3
const i = e.abs() // result 89.09, base 8909, precision = 3
As you can see, by default all maths keeps first arg precision.
This behavior can be modified by extending base FixedPoint
class, as well as default precision, for parsing plain numeric types
import { FP, FixedPoint, parseNumeric } from '@hastom/fixed-point'
const BTC: FPParser = (n: FixedPoint | Numeric) => {
if (n instanceof FixedPoint) {
return n
}
return new _BTC(...parseNumeric(n, 8))
}
class _BTC extends FixedPoint {
protected parser: FPParser = BTC
protected precisionResolution: PrecisionResolution = 'max'
}
const a = BTC(1) // means 1.00000000, base 100000000, precision = 8
const b = BTC(0.00000010) // means 0.0000001, base 10, precision = 8
const c = a.add(b) // result 1.00000010, base 100000010, precision = 8
const d = a.div([0.025, 12]) // result 40.000000000000, base 40000000000000, precision = 12