0.3.20 • Published 5 years ago

@liquid-carrot/carrot v0.3.20

Weekly downloads
10
License
MIT
Repository
github
Last release
5 years ago

You can use Carrot's ability to design networks of arbitrary complexity by itself to solve whatever problem you have. If you want to see Carrot designing a neural-network to play flappy-bird check here

For Documentation, visit here

Key Features

  • Simple docs & interactive examples
  • Neuro-evolution & population based training
  • Multi-threading & GPU (coming soon)
  • Preconfigured GRU, LSTM, NARX Networks
  • Mutable Neurons, Layers, Groups, and Networks
  • SVG Network Visualizations using D3.js

Demos

flappy bird neuro-evolution demo Flappy bird neuro-evolution

Install

$ npm i @liquid-carrot/carrot

Carrot files are hosted by JSDelivr

For prototyping or learning, use the latest version here:

<script src="https://cdn.jsdelivr.net/npm/@liquid-carrot/carrot/dist/carrot.umd2.min.js"></script>

For production, link to a specific version number to avoid unexpected breakage from newer versions:

<script src="https://cdn.jsdelivr.net/npm/@liquid-carrot/carrot@0.3.17/dist/carrot.umd2.min.js"></script>

Getting Started

💡 Want to be super knowledgeable about neuro-evolution in a few minutes?

Check out this article by the creator of NEAT, Kenneth Stanley

💡 Curious about how neural-networks can understand speech and video?

Check out this video on Recurrent Neural Networks, from @LearnedVector, on YouTube

This is a simple perceptron:

perceptron.

How to build it with Carrot:

let { architect } = require('@liquid-carrot/carrot');

// The example Perceptron you see above with 4 inputs, 5 hidden, and 1 output neuron
let simplePerceptron = new architect.Perceptron(4, 5, 1);

Building networks is easy with 6 built-in networks

let { architect } = require('@liquid-carrot/carrot');

let LSTM = new architect.LSTM(4, 5, 1);

// Add as many hidden layers as needed
let Perceptron = new architect.Perceptron(4, 5, 20, 5, 10, 1);

Building custom network architectures

let architect = require('@liquid-carrot/carrot').architect
let Layer = require('@liquid-carrot/carrot').Layer

let input = new Layer.Dense(1);
let hidden1 = new Layer.LSTM(5);
let hidden2 = new Layer.GRU(1);
let output = new Layer.Dense(1);

// connect however you want
input.connect(hidden1);
hidden1.connect(hidden2);
hidden2.connect(output);

let network = architect.Construct([input, hidden1, hidden2, output]);

Networks also shape themselves with neuro-evolution

let { Network, methods } = require('@liquid-carrot/carrot');

// this network learns the XOR gate (through neuro-evolution)
async function execute () {
  // no hidden layers...
   var network = new Network(2,1);

   // XOR dataset
   var trainingSet = [
       { input: [0,0], output: [0] },
       { input: [0,1], output: [1] },
       { input: [1,0], output: [1] },
       { input: [1,1], output: [0] }
   ];

   await network.evolve(trainingSet, {
       mutation: methods.mutation.FFW,
       equal: true,
       error: 0.05,
       elitism: 5,
       mutation_rate: 0.5
   });

   // and it works!
   network.activate([0,0]); // 0.2413
   network.activate([0,1]); // 1.0000
   network.activate([1,0]); // 0.7663
   network.activate([1,1]); // 0.008
}

execute();

Build vanilla neural networks

let Network = require('@liquid-carrot/carrot').Network

let network = new Network([2, 2, 1]) // Builds a neural network with 5 neurons: 2 + 2 + 1

Or implement custom algorithms with neuron-level control

let Node = require('@liquid-carrot/carrot').Node

let A = new Node() // neuron
let B = new Node() // neuron

A.connect(B)
A.activate(0.5)
console.log(B.activate())

Try with

Data Sets

Contributors ✨

This project exists thanks to all the people who contribute. We can't do it without you! 🙇

Thanks goes to these wonderful people (emoji key):

This project follows the all-contributors specification. Contributions of any kind welcome!

💬 Contributing

Carrot's GitHub Issues

Your contributions are always welcome! Please have a look at the contribution guidelines first. 🎉

To build a community welcome to all, Carrot follows the Contributor Covenant Code of Conduct.

And finally, a big thank you to all of you for supporting! 🤗

Patrons

Carrot's Patrons

Become a Patron

Acknowledgements

A special thanks to:

@wagenaartje for Neataptic which was the starting point for this project

@cazala for Synaptic which pioneered architecture free neural networks in javascript and was the starting point for Neataptic

@robertleeplummerjr for GPU.js which makes using GPU in JS easy and Brain.js which has inspired Carrot's development

0.3.20

5 years ago

0.3.19

5 years ago

0.3.18

6 years ago

0.3.17

6 years ago

0.3.16

6 years ago

0.3.15

6 years ago

0.3.14

6 years ago

0.3.13

6 years ago

0.3.12

6 years ago

0.3.11

6 years ago

0.3.10

6 years ago

0.3.9

6 years ago

0.3.8

6 years ago

0.3.6

6 years ago

0.3.5

6 years ago

0.3.4

6 years ago

0.3.3

6 years ago

0.3.2

6 years ago

0.3.1

6 years ago

0.3.0

6 years ago

0.2.28

6 years ago

0.2.27

6 years ago

0.2.26

6 years ago

0.2.25

6 years ago

0.2.24

6 years ago

0.2.23

6 years ago

0.2.22

6 years ago

0.2.21

6 years ago

0.2.20

6 years ago

0.2.19

6 years ago

0.2.18

6 years ago

0.2.16

6 years ago

0.2.15

6 years ago

0.2.14

6 years ago

0.2.13

6 years ago

0.2.12

6 years ago

0.2.11

6 years ago

0.2.10

6 years ago

0.2.9

6 years ago

0.2.8

6 years ago

0.2.7

6 years ago

0.2.6

6 years ago

0.2.5

6 years ago

0.2.4

6 years ago

0.2.3

6 years ago

0.2.2

6 years ago

0.2.1

6 years ago

0.2.0

6 years ago

0.1.135

6 years ago

0.1.134

6 years ago

0.1.133

6 years ago

0.1.132

6 years ago

0.1.131

6 years ago

0.1.130

6 years ago

0.1.129

6 years ago

0.1.128

6 years ago

0.1.127

6 years ago

0.1.126

6 years ago

0.1.125

6 years ago

0.1.124

6 years ago

0.1.123

6 years ago

0.1.122

6 years ago

0.1.121

6 years ago

0.1.120

6 years ago

0.1.119

6 years ago

0.1.118

6 years ago

0.1.117

6 years ago

0.1.116

6 years ago

0.1.115

6 years ago

0.1.114

6 years ago

0.1.113

6 years ago

0.1.112

6 years ago

0.1.111

6 years ago

0.1.110

6 years ago

0.1.109

6 years ago

0.1.108

6 years ago

0.1.107

6 years ago

0.1.106

6 years ago

0.1.105

6 years ago

0.1.104

6 years ago

0.1.103

6 years ago

0.1.102

6 years ago

0.1.101

6 years ago

0.1.100

6 years ago

0.1.99

6 years ago

0.1.98

6 years ago

0.1.97

6 years ago

0.1.96

6 years ago

0.1.95

6 years ago

0.1.94

6 years ago

0.1.93

6 years ago

0.1.92

6 years ago

0.1.91

6 years ago

0.1.90

6 years ago

0.1.89

6 years ago

0.1.88

6 years ago

0.1.87

6 years ago

0.1.86

6 years ago

0.1.85

6 years ago

0.1.84

6 years ago

0.1.83

6 years ago

0.1.82

6 years ago

0.1.81

6 years ago

0.1.80

6 years ago

0.1.79

6 years ago

0.1.78

6 years ago

0.1.77

6 years ago

0.1.76

6 years ago

0.1.75

6 years ago

0.1.74

6 years ago

0.1.73

6 years ago

0.1.72

6 years ago

0.1.71

6 years ago

0.1.70

6 years ago

0.1.69

6 years ago

0.1.68

6 years ago

0.1.67

6 years ago

0.1.66

6 years ago

0.1.65

6 years ago

0.1.64

6 years ago

0.1.63

6 years ago

0.1.62

6 years ago

0.1.61

6 years ago

0.1.60

6 years ago

0.1.59

6 years ago

0.1.58

6 years ago

0.1.57

6 years ago

0.1.56

6 years ago

0.1.55

6 years ago

0.1.54

6 years ago

0.1.53

6 years ago

0.1.52

6 years ago

0.1.51

6 years ago

0.1.50

6 years ago

0.1.49

6 years ago

0.1.48

6 years ago

0.1.47

6 years ago

0.1.46

6 years ago

0.1.45

6 years ago

0.1.44

6 years ago

0.1.43

6 years ago

0.1.42

6 years ago

0.1.41

6 years ago

0.1.40

6 years ago

0.1.39

6 years ago

0.1.38

6 years ago

0.1.37

6 years ago

0.1.36

6 years ago

0.1.35

6 years ago

0.1.34

6 years ago

0.1.33

6 years ago

0.1.32

6 years ago

0.1.31

6 years ago

0.1.30

6 years ago

0.1.29

6 years ago

0.1.28

6 years ago

0.1.27

6 years ago

0.1.26

6 years ago

0.1.25

6 years ago

0.1.24

6 years ago

0.1.23

6 years ago

0.1.22

6 years ago

0.1.21

6 years ago

0.1.20

6 years ago

0.1.19

6 years ago

0.1.18

6 years ago

0.1.17

6 years ago

0.1.16

6 years ago

0.1.15

6 years ago

0.1.14

6 years ago

0.1.13

6 years ago

0.1.12

6 years ago

0.1.11

6 years ago

0.1.10

6 years ago

0.1.9

6 years ago

0.1.8

6 years ago

0.1.7

6 years ago

0.1.6

6 years ago

0.1.5

6 years ago

0.1.4

6 years ago

0.1.3

6 years ago

0.1.2

6 years ago

0.1.1

6 years ago

0.1.0

6 years ago

0.0.62

6 years ago

0.0.61

6 years ago

0.0.60

6 years ago

0.0.59

6 years ago

0.0.58

6 years ago

0.0.57

6 years ago

0.0.56

6 years ago

0.0.55

6 years ago

0.0.54

6 years ago

0.0.53

6 years ago

0.0.52

6 years ago

0.0.51

6 years ago

0.0.50

6 years ago

0.0.49

6 years ago

0.0.48

6 years ago

0.0.47

6 years ago

0.0.46

6 years ago

0.0.45

6 years ago

0.0.44

6 years ago

0.0.43

6 years ago

0.0.42

6 years ago

0.0.41

6 years ago

0.0.40

6 years ago

0.0.39

6 years ago

0.0.38

6 years ago

0.0.37

6 years ago

0.0.36

6 years ago

0.0.35

6 years ago

0.0.34

6 years ago

0.0.33

6 years ago

0.0.32

6 years ago

0.0.31

6 years ago

0.0.30

6 years ago

0.0.29

6 years ago

0.0.28

6 years ago

0.0.27

6 years ago

0.0.26

6 years ago

0.0.25

6 years ago

0.0.24

6 years ago

0.0.23

6 years ago

0.0.22

6 years ago

0.0.21

6 years ago

0.0.20

6 years ago

0.0.19

6 years ago

0.0.18

6 years ago

0.0.17

6 years ago

0.0.16

6 years ago

0.0.15

6 years ago

0.0.14

6 years ago

0.0.13

6 years ago

0.0.12

6 years ago

0.0.11

6 years ago

0.0.10

6 years ago

0.0.9

6 years ago

0.0.8

7 years ago

0.0.7

7 years ago

0.0.6

7 years ago

0.0.4

7 years ago

0.0.3

7 years ago

0.0.2

7 years ago

0.0.1

7 years ago

0.0.0

7 years ago