1.0.1 • Published 1 year ago

@nvx-wallet/io-ts v1.0.1

Weekly downloads
-
License
MIT
Repository
github
Last release
1 year ago

build status dependency status npm downloads Minified Size

Table of contents

Installation

To install the stable version:

npm i io-ts

The idea

Blog post: "Typescript and validations at runtime boundaries" by @lorefnon

A value of type Type<A, O, I> (called "codec") is the runtime representation of the static type A.

Also a codec can

  • decode inputs of type I (through decode)
  • encode outputs of type O (through encode)
  • be used as a custom type guard (through is)
class Type<A, O, I> {
  readonly _A: A
  readonly _O: O
  readonly _I: I
  constructor(
    /** a unique name for this codec */
    readonly name: string,
    /** a custom type guard */
    readonly is: (u: unknown) => u is A,
    /** succeeds if a value of type I can be decoded to a value of type A */
    readonly validate: (input: I, context: Context) => Either<Errors, A>,
    /** converts a value of type A to a value of type O */
    readonly encode: (a: A) => O
  ) {}
  /** a version of `validate` with a default context */
  decode(i: I): Either<Errors, A>
}

Note. The Either type is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.

Example

A codec representing string can be defined as

import * as t from 'io-ts'

const isString = (u: unknown): u is string => typeof u === 'string'

const string = new t.Type<string, string, unknown>(
  'string',
  isString,
  (u, c) => (isString(u) ? t.success(u) : t.failure(u, c)),
  t.identity
)

A codec can be used to validate an object in memory (for example an API payload)

import * as t from 'io-ts'

const User = t.type({
  userId: t.number,
  name: t.string
})

// validation succeeded
User.decode(JSON.parse('{"userId":1,"name":"Giulio"}')) // => Right({ userId: 1, name: "Giulio" })

// validation failed
User.decode(JSON.parse('{"name":"Giulio"}')) // => Left([...])

TypeScript compatibility

The stable version is tested against TypeScript 3.5.2

io-ts versionrequired TypeScript version
1.6.x+3.2.2+
1.5.33.0.1+
1.5.2-2.7.2+

Note. This library is conceived, tested and is supposed to be consumed by TypeScript with the strict flag turned on.

Note. If you are running < typescript@3.0.1 you have to polyfill unknown.

You can use unknown-ts as a polyfill.

Error reporters

A reporter implements the following interface

interface Reporter<A> {
  report: (validation: Validation<any>) => A
}

This package exports a default PathReporter reporter

Example

import { PathReporter } from 'io-ts/lib/PathReporter'

const result = User.decode({ name: 'Giulio' })

console.log(PathReporter.report(result))
// => [ 'Invalid value undefined supplied to : { userId: number, name: string }/userId: number' ]

You can define your own reporter. Errors has the following type

interface ContextEntry {
  readonly key: string
  readonly type: Decoder<any, any>
}

interface Context extends ReadonlyArray<ContextEntry> {}

interface ValidationError {
  readonly value: unknown
  readonly context: Context
}

interface Errors extends Array<ValidationError> {}

Example

const getPaths = <A>(v: t.Validation<A>): Array<string> => {
  return v.fold(errors => errors.map(error => error.context.map(({ key }) => key).join('.')), () => ['no errors'])
}

console.log(getPaths(User.decode({}))) // => [ '.userId', '.name' ]

Custom error messages

You can set your own error message by providing a message argument to failure

Example

const NumberFromString = new t.Type<number, string, unknown>(
  'NumberFromString',
  t.number.is,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const n = +s
      return isNaN(n) ? t.failure(u, c, 'cannot parse to a number') : t.success(n)
    }),
  String
)

console.log(PathReporter.report(NumberFromString.decode('a')))
// => ['cannot parse to a number']

You can also use the withMessage helper from io-ts-types

Community

  • io-ts-types - A collection of codecs and combinators for use with io-ts
  • io-ts-reporters - Error reporters for io-ts
  • geojson-iots - codecs for GeoJSON as defined in rfc7946 made with io-ts
  • graphql-to-io-ts - Generate typescript and cooresponding io-ts types from a graphql schema
  • io-ts-promise - Convenience library for using io-ts with promise-based APIs

TypeScript integration

codecs can be inspected

instrospection

This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values

inference

Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema (and comments are preserved).

Static types can be extracted from codecs using the TypeOf operator

type User = t.TypeOf<typeof User>

// same as
type User = {
  userId: number
  name: string
}

Implemented types / combinators

TypeTypeScriptcodec / combinator
nullnullt.null or t.nullType
undefinedundefinedt.undefined
voidvoidt.void or t.voidType
stringstringt.string
numbernumbert.number
booleanbooleant.boolean
unknownunknownt.unknown
nevernevert.never
objectobjectt.object
array of unknownArray<unknown>t.UnknownArray
array of typeArray<A>t.array(A)
record of unknownRecord<string, unknown>t.UnknownRecord
record of typeRecord<K, A>t.record(K, A)
functionFunctiont.Function
literal's't.literal('s')
partialPartial<{ name: string }>t.partial({ name: t.string })
readonlyReadonly<A>t.readonly(A)
readonly arrayReadonlyArray<A>t.readonlyArray(A)
type aliastype T = { name: A }t.type({ name: A })
tuple[ A, B ]t.tuple([ A, B ])
unionA \| Bt.union([ A, B ])
intersectionA & Bt.intersection([ A, B ])
keyofkeyof Mt.keyof(M) (only supports string keys)
recursive typest.recursion(name, definition)
branded types / refinementst.brand(A, predicate, brand)
integert.Int (built-in branded codec)
exact typest.exact(type)
strictt.strict({ name: A }) (an alias of t.exact(t.type({ name: A })))

Recursive types

Recursive types can't be inferred by TypeScript so you must provide the static type as a hint

interface Category {
  name: string
  categories: Array<Category>
}

const Category: t.Type<Category> = t.recursion('Category', () =>
  t.type({
    name: t.string,
    categories: t.array(Category)
  })
)

Mutually recursive types

interface Foo {
  type: 'Foo'
  b: Bar | undefined
}

interface Bar {
  type: 'Bar'
  a: Foo | undefined
}

const Foo: t.Type<Foo> = t.recursion('Foo', () =>
  t.interface({
    type: t.literal('Foo'),
    b: t.union([Bar, t.undefined])
  })
)

const Bar: t.Type<Bar> = t.recursion('Bar', () =>
  t.interface({
    type: t.literal('Bar'),
    a: t.union([Foo, t.undefined])
  })
)

Branded types / Refinements

You can brand / refine a codec (any codec) using the brand combinator

// a unique brand for positive numbers
interface PositiveBrand {
  readonly Positive: unique symbol // use `unique symbol` here to ensure uniqueness across modules / packages
}

const Positive = t.brand(
  t.number, // a codec representing the type to be refined
  (n): n is t.Branded<number, PositiveBrand> => n >= 0, // a custom type guard using the build-in helper `Branded`
  'Positive' // the name must match the readonly field in the brand
)

type Positive = t.TypeOf<typeof Positive>
/*
same as
type Positive = number & t.Brand<PositiveBrand>
*/

Branded codecs can be merged with t.intersection

// t.Int is a built-in branded codec
const PositiveInt = t.intersection([t.Int, Positive])

type PositiveInt = t.TypeOf<typeof PositiveInt>
/*
same as
type PositiveInt = number & t.Brand<t.IntBrand> & t.Brand<PositiveBrand>
*/

Exact types

You can make a codec exact (which means that additional properties are stripped) using the exact combinator

const ExactUser = t.exact(User)

User.decode({ userId: 1, name: 'Giulio', age: 45 }) // ok, result is right({ userId: 1, name: 'Giulio', age: 45 })
ExactUser.decode({ userId: 1, name: 'Giulio', age: 43 }) // ok but result is right({ userId: 1, name: 'Giulio' })

Mixing required and optional props

You can mix required and optional props using an intersection

const A = t.type({
  foo: t.string
})

const B = t.partial({
  bar: t.number
})

const C = t.intersection([A, B])

type C = t.TypeOf<typeof C>

// same as
type C = {
  foo: string
} & {
  bar?: number | undefined
}

You can apply partial to an already defined codec via its props field

const PartialUser = t.partial(User.props)

type PartialUser = t.TypeOf<typeof PartialUser>

// same as
type PartialUser = {
  name?: string
  age?: number
}

Custom types

You can define your own types. Let's see an example

// represents a Date from an ISO string
const DateFromString = new t.Type<Date, string, unknown>(
  'DateFromString',
  (u): u is Date => u instanceof Date,
  (u, c) =>
    t.string.validate(u, c).chain(s => {
      const d = new Date(s)
      return isNaN(d.getTime()) ? t.failure(u, c) : t.success(d)
    }),
  a => a.toISOString()
)

const s = new Date(1973, 10, 30).toISOString()

DateFromString.decode(s)
// right(new Date('1973-11-29T23:00:00.000Z'))

DateFromString.decode('foo')
// left(errors...)

Note that you can deserialize while validating.

Generic Types

Polymorphic codecs are represented using functions. For example, the following typescript:

interface ResponseBody<T> {
  result: T
  _links: Links
}
interface Links {
  previous: string
  next: string
}

Would be:

// t.Mixed = t.Type<any, any, unknown>
const ResponseBody = <C extends t.Mixed>(codec: C) =>
  t.interface({
    result: codec,
    _links: Links
  })

const Links = t.interface({
  previous: t.string,
  next: t.string
})

And used like:

const UserModel = t.type({
  name: t.string
})

functionThatRequiresRuntimeType(ResponseBody(t.array(UserModel)), ...params)

Piping

You can pipe two codecs if their type parameters do align

const NumberCodec = new t.Type<number, string, string>(
  'NumberCodec',
  t.number.is,
  (s, c) => {
    const n = parseFloat(s)
    return isNaN(n) ? t.failure(s, c) : t.success(n)
  },
  String
)

const NumberFromString = t.string.pipe(
  NumberCodec,
  'NumberFromString'
)

Tips and Tricks

Is there a way to turn the checks off in production code?

No, however you can define your own logic for that (if you really trust the input)

import * as t from 'io-ts'
import { Either, right } from 'fp-ts/lib/Either'

const { NODE_ENV } = process.env

export function unsafeDecode<A, O, I>(value: I, codec: t.Type<A, O, I>): Either<t.Errors, A> {
  if (NODE_ENV !== 'production' || codec.encode !== t.identity) {
    return codec.decode(value)
  } else {
    // unsafe cast
    return right(value as any)
  }
}

// or...

import { failure } from 'io-ts/lib/PathReporter'

export function unsafeGet<A, O, I>(value: I, codec: t.Type<A, O, I>): A {
  if (NODE_ENV !== 'production' || type.encode !== t.identity) {
    return codec.decode(value).getOrElseL(errors => {
      throw new Error(failure(errors).join('\n'))
    })
  } else {
    // unsafe cast
    return value as any
  }
}

Union of string literals

Use keyof instead of union when defining a union of string literals

const Bad = t.union([
  t.literal('foo'),
  t.literal('bar'),
  t.literal('baz')
  // etc...
])

const Good = t.keyof({
  foo: null,
  bar: null,
  baz: null
  // etc...
})

Benefits

  • unique check for free
  • better performance, O(log(n)) vs O(n)

Beware that keyof is designed to work with objects containing string keys. If you intend to define a numbers enumeration, you have to use an union of number literals :

const HttpCode = t.union([
  t.literal(200),
  t.literal(201),
  t.literal(202)
  // etc...
])