@obsidian-ai-providers/sdk v1.1.1
Obsidian AI Providers SDK
This SDK is used to interact with the AI Providers plugin.
Take a look at the example plugin to see how to use the SDK.
Installation
Install the SDK in your Obsidian plugin.
npm install @obsidian-ai-providers/sdk
Usage
1. Wait for AI Providers plugin in your plugin
Any plugin can not be loaded instantly, so you need to wait for AI Providers plugin to be loaded.
import { waitForAI } from '@obsidian-ai-providers/sdk';
const aiResolver = await waitForAI();
const aiProviders = await aiResolver.promise;
// Object with all available AI providers
aiProviders.providers;
/*
[
{
id: "1732815722182",
model: "smollm2:135m",
name: "Ollama local",
type: "ollama",
url: "http://localhost:11434",
apiKey: "sk-1234567890",
availableModels: ['smollm2:135m', 'llama2:latest'],
},
...
]
*/
// Every time in any async code you have to call `waitForAI` to get the current instance of AI Providers.
// It will be changed when the user changes the AI Provider in settings.
2. Show fallback settings tab
Before AI Providers plugin is loaded and activated, you need to show fallback settings tab.initAI
function takes care of showing fallback settings tab and runs callback when AI Providers plugin is loaded and activated.
import { initAI } from '@obsidian-ai-providers/sdk';
export default class SamplePlugin extends Plugin {
...
async onload() {
// Wrap your onload code in initAI callback. Do not `await` it.
initAI(this.app, this, async ()=>{
this.addSettingTab(new SampleSettingTab(this.app, this));
});
}
}
3. Import SDK styles
Don't forget to import the SDK styles for fallback settings tab in your plugin.
@import '@obsidian-ai-providers/sdk/style.css';
Make sure that there is loader for .css
files in your esbuild config.
export default {
...
loader: {
".ts": "ts",
".css": "css"
},
}
Alternatively you can use the content of @obsidian-ai-providers/sdk/style.css
in your plugin.
4. Migrate existing provider
If you want to add providers to the AI Providers plugin, you can use the migrateProvider
method.
It will show a confirmation dialog and if the user confirms, it will add the provider to the plugin settings.
// The migrateProvider method takes an IAIProvider object and returns a promise
// that resolves to the migrated (or existing matching) provider, or false if migration was canceled
const migratedOrExistingProvider = await aiProviders.migrateProvider({
id: "any-unique-string",
name: "Ollama local",
type: "ollama",
url: "http://localhost:11434",
apiKey: "sk-1234567890",
model: "smollm2:135m",
});
// If a provider with matching `type`, `apiKey`, `url`, and `model` fields already exists,
// it will return that existing provider instead of creating a duplicate
// If the user cancels the migration, it will return false
if (migratedOrExistingProvider === false) {
// Migration was canceled by the user
console.log("User canceled the migration");
} else {
// Provider was added or already existed
console.log("Provider available:", migratedOrExistingProvider);
}
Execute prompt
You can use just the list of providers and selected models but you can also make requests to AI Providers using execute
method.
// Simple prompt-based request
const chunkHandler = await aiProviders.execute({
provider: aiProviders.providers[0],
prompt: "What is the capital of Great Britain?",
});
// Using messages format (more flexible, allowing multiple messages and different roles)
const chunkHandlerWithMessages = await aiProviders.execute({
provider: aiProviders.providers[0],
messages: [
{ role: "system", content: "You are a helpful geography assistant." },
{ role: "user", content: "What is the capital of Great Britain?" }
]
});
// Working with images (basic approach)
const chunkHandlerWithImage = await aiProviders.execute({
provider: aiProviders.providers[0],
prompt: "Describe what you see in this image",
images: ["..."] // Base64 encoded image
});
// Working with images using messages format
const chunkHandlerWithContentBlocks = await aiProviders.execute({
provider: aiProviders.providers[0],
messages: [
{ role: "system", content: "You are a helpful image analyst." },
{
role: "user",
content: [
{ type: "text", text: "Describe what you see in this image" },
{ type: "image_url", image_url: { url: "..." } }
]
}
]
});
// Handle chunk in stream mode
chunkHandler.onData((chunk, accumulatedText) => {
console.log(accumulatedText);
});
// Handle end of stream
chunkHandler.onEnd((fullText) => {
console.log(fullText);
});
// Handle error
chunkHandler.onError((error) => {
console.error(error);
});
// Abort request if you need to
chunkHandler.abort();
Embed text
const embeddings = await aiProviders.embed({
provider: aiProviders.providers[0],
input: "What is the capital of Great Britain?", // Use 'input' parameter
});
// embeddings is just an array of numbers
embeddings; // [0.1, 0.2, 0.3, ...]
Fetch models
There is no need to fetch models manually, but you can do it if you want to.
You can fetch models for any provider using fetchModels
method.
// Makes request to the provider and returns list of models
// Also updates the list of available models in the provider object
const models = await aiProviders.fetchModels(aiProviders.providers[0]);
console.log(models); // ['smollm2:135m', 'llama2:latest']
console.log(aiProviders.providers[0].availableModels) // ['smollm2:135m', 'llama2:latest']
Error handling
All methods throw errors if something goes wrong.
In most cases it shows a Notice in the Obsidian UI.
try {
await aiProviders.embed({
provider: aiProviders.providers[0],
text: "What is the capital of Great Britain?",
});
} catch (error) {
// You should handle errors in your plugin
console.error(error);
}
const chunkHandler = await aiProviders.execute({
provider: aiProviders.providers[0],
prompt: "What is the capital of Great Britain?",
});
// Only `execute` method passes errors to the onError callback
chunkHandler.onError((error) => {
console.error(error);
});
If you have any questions, please contact me via Telegram @pavel_frankov.