@paradiselabs/mco-protocol v0.2.8
🚀 MCO Protocol: The Missing Orchestration Layer for MCP
Completing the Agentic Trifecta: MCP + A2P + MCO
Transform unreliable agents into structured, autonomous workflows with progressive revelation and persistent memory.
🎮 Live Demo • 📦 NPM Package • 📖 Documentation
🌟 The Agentic Trifecta
graph TB
subgraph "The Foundation of Autonomous AI"
MCP[📊 MCP<br/>Model Context Protocol<br/><i>Data Integration</i>]
A2P[🤝 A2P<br/>Agent-to-Agent Protocol<br/><i>Communication</i>]
MCO[🎛️ MCO<br/>Model Configuration Orchestration<br/><i>Reliable Orchestration</i>]
end
MCP --> AGENT[🤖 Autonomous Agent]
A2P --> AGENT
MCO --> AGENT
AGENT --> RESULT[✨ Production-Ready<br/>Autonomous AI]
style MCO fill:#667eea,stroke:#333,stroke-width:3px,color:#fff
style RESULT fill:#2ecc71,stroke:#333,stroke-width:2px,color:#fffWhy MCO is Essential:
- 📊 MCP connects agents to data sources → "What can I access?"
- 🤝 A2P enables agent communication → "How do we coordinate?"
- 🎛️ MCO ensures reliable execution → "How do we actually get things done?"
🎯 The Problem MCO Solves
Traditional autonomous agents (AutoGPT, BabyAGI) suffer from:
- 🔄 Endless loops and failed executions
- 🧠 Context overload leading to poor decisions
- 🎯 Lack of focus on core objectives
- 📉 Unpredictable reliability in production
💡 The MCO Solution: Progressive Revelation
graph LR
subgraph "Traditional Approach"
T1[Agent] --> T2[Everything at Once<br/>📚 Core + Features + Styles + Context]
T2 --> T3[❌ Overwhelmed<br/>Loops & Failures]
end
subgraph "MCO Progressive Revelation"
M1[Agent] --> M2[🧠 Persistent Memory<br/>Core + Success Criteria]
M2 --> M3[⚡ Step 1: Focus on Core]
M3 --> M4[✨ Step 2: + Features Injection]
M4 --> M5[🎨 Step 3: + Styles Injection]
M5 --> M6[✅ Reliable Completion]
end
style T3 fill:#e74c3c,color:#fff
style M6 fill:#2ecc71,color:#fff🛠️ How MCO Works
SNLP (Syntactic Natural Language Programming)
MCO uses a revolutionary programming language that combines structured syntax with natural language:
# mco.core - Always in persistent memory
@workflow "Research Assistant"
>NLP An AI assistant that conducts autonomous research with reliability.
@data:
topic: "AI Agent Orchestration"
findings: []
@agents:
researcher:
steps:
- "Research the topic thoroughly"
- "Analyze patterns and insights"
- "Create comprehensive report"
# mco.features - Injected at 33% progress
@feature "Data Visualization"
>NLP Create charts and graphs when appropriate to enhance understanding.
# mco.styles - Injected at 66% progress
@style "Professional Formatting"
>NLP Use clear headings, bullet points, and executive summary format.Orchestration Flow
sequenceDiagram
participant AF as Agent Framework
participant MCO as MCO MCP Server
participant SNLP as SNLP Files
Note over AF,SNLP: Progressive Revelation in Action
AF->>MCO: start_orchestration()
MCO->>SNLP: Load mco.core + mco.sc
MCO-->>AF: orchestration_id
AF->>MCO: get_next_directive()
Note right of MCO: Persistent Memory Only
MCO-->>AF: Step 1 + Core Context
AF->>MCO: complete_step(result)
MCO->>MCO: Evaluate against success criteria
AF->>MCO: get_next_directive()
Note right of MCO: Strategic Injection
MCO->>SNLP: Inject mco.features
MCO-->>AF: Step 2 + Core + Features
AF->>MCO: complete_step(result)
AF->>MCO: get_next_directive()
MCO->>SNLP: Inject mco.styles
MCO-->>AF: Step 3 + Core + Features + Styles
AF->>MCO: complete_step(result)
MCO-->>AF: ✅ Workflow Complete🚀 Quick Start
Installation
npm install -g @paradiselabs/mco-protocolCreate Your First Workflow
# Initialize new MCO project
mco init my-research-assistant
# Opens configuration tool in browser
# Generates: mco.core, mco.sc, mco.features, mco.stylesAdd to Any MCP-Enabled Framework
{
"mcpServers": {
"mco-orchestration": {
"command": "npx",
"args": ["@paradiselabs/mco-protocol", "--config-dir", "./my-research-assistant"]
}
}
}Use in Your Agent Framework
# Works with ANY MCP-enabled framework
directive = mcp_client.call_tool("get_next_directive")
result = execute_task(directive.instruction)
mcp_client.call_tool("complete_step", step_id=directive.step_id, result=result)🎭 Live Demo
Generate real SNLP configurations and see MCO in action with live MCP server simulation.
📊 Architecture Overview
graph TB
subgraph "MCO MCP Server"
CLI[🖥️ CLI Interface<br/>mco init, serve, validate]
CONFIG[🎛️ Configuration Tool<br/>Web-based SNLP Generator]
PARSER[📝 SNLP Parser<br/>@markers + >NLP sections]
ENGINE[⚡ Orchestration Engine<br/>Progressive Revelation]
MCP[📡 MCP Tool Provider<br/>start_orchestration, get_next_directive]
end
subgraph "SNLP Files"
CORE[🧠 mco.core<br/>Persistent Memory]
SC[🎯 mco.sc<br/>Success Criteria]
FEATURES[✨ mco.features<br/>Strategic Injection]
STYLES[🎨 mco.styles<br/>Strategic Injection]
end
subgraph "Agent Frameworks"
AUTOGPT[🤖 AutoGPT]
CREWAI[👥 CrewAI]
LANGGRAPH[🕸️ LangGraph]
CUSTOM[⚙️ Custom Agents]
end
CLI --> CONFIG
CONFIG --> CORE & SC & FEATURES & STYLES
PARSER --> CORE & SC & FEATURES & STYLES
PARSER --> ENGINE
ENGINE --> MCP
MCP <==> AUTOGPT
MCP <==> CREWAI
MCP <==> LANGGRAPH
MCP <==> CUSTOM
style MCO fill:#667eea,color:#fff
style CORE fill:#e8f5e9
style SC fill:#e3f2fd
style FEATURES fill:#fff3e0
style STYLES fill:#fce4ec🏆 Perfect for MCP Hackathon 2025
Track 1: MCP Server Implementation ✅
MCO exemplifies the future of MCP by:
- 🔧 Extending MCP's Vision: Making agent orchestration as standardized as data access
- 🎯 Solving Real Problems: Transforming unreliable agents into production-ready systems
- 🚀 Ready for Production: Live NPM package, working implementation
- 🌟 Innovative Approach: First orchestration protocol designed specifically for MCP ecosystem
📈 Before vs After
graph LR
subgraph "Before MCO"
B1[🤖 Agent] --> B2[❓ Vague Prompts]
B2 --> B3[🔄 Loops & Failures]
B3 --> B4[😤 Manual Intervention]
end
subgraph "After MCO"
A1[🤖 Agent] --> A2[🎛️ MCO Orchestration]
A2 --> A3[📋 Structured Steps]
A3 --> A4[✅ Reliable Completion]
end
style B3 fill:#e74c3c,color:#fff
style A4 fill:#2ecc71,color:#fff🔗 Available MCP Tools
MCO exposes these tools through the MCP protocol:
| Tool | Description | Use Case |
|---|---|---|
start_orchestration | Initialize new workflow | Begin autonomous task |
get_next_directive | Get next step with context | Progressive execution |
complete_step | Mark step complete | Track progress |
get_workflow_status | Check progress | Monitoring |
evaluate_against_criteria | Quality assessment | Success validation |
🎨 CLI Commands
mco init [project-name] # Create new MCO project
mco validate [config-dir] # Validate SNLP files
mco serve [config-dir] # Start MCP server
mco templates # List available templates🤝 Contributing
We welcome contributions! MCO is designed to become the standard for agent orchestration.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📜 License
MIT License - see LICENSE file for details.
🚀 Join the Revolution
MCO Protocol is live and ready to transform how you build autonomous agents.
- 📦 Install:
npm install -g @paradiselabs/mco-protocol - 🎮 Demo: Interactive Gradio Space
- 💬 Discord: Join our community
- 🐦 Twitter: @paradiselabs_ai
🌟 Star this repository if MCO helps you build better agents! 🌟
Made with ❤️ by Paradise Labs