@reverieit/reverie-client v0.4.0
Reverie Client
Reverie Client is an SDK for interacting with Reverie Language Technologies' APIs for speech-to-text, text translation, language identification, and more.
Check out the sample integrations in Github Repo. Go to github.com/reverieinc/javascript-sdk
Installation
Install the package via npm:
npm i @reverieit/reverie-clientGetting Started
Step 1: Obtain API Key
Go to revup.reverieinc.com and create your first API key.
Step 2: Initialize Reverie Client
Import and initialize ReverieClient with your API key and app ID:
const ReverieClient = require("reverie-client");
const reverieClient = new ReverieClient({
apiKey: "YOUR-API-KEY",
appId: "YOUR-APP-ID",
});Step 3: Include STT SDK (If Using Speech-to-Text Streaming)
If you are using STT stream, add the following script to the head section of your index.html:
<script src="https://cdn.jsdelivr.net/npm/reverie-stt-sdk/dist/bundle.js"></script>Features
1. Transliterate Text
const result = await reverieClient.transliterate({
text: "Namaste",
src_lang: "en",
tgt_lang: "ta",
});Parameters:
text(string, required): The text to be transliterated.src_lang(string, required): The source language code (e.g., "hi").tgt_lang(string, required): The target language code (e.g., "ta").
2. Analyze Text
const analysis = await reverieClient.analyze_text({
text: "Aap kaise hain?",
src_lang: "hi",
});Parameters:
text(string, required): The text to analyze.src_lang(string, required): The source language code.tgt_lang(string, optional): The target language code for translation.translation_domain(string, optional): The domain of translation (e.g., "generic").moderation_types(array, optional): Types of content moderation to apply (e.g.,["hate_speech", "profanity"]).
3. Language Identification (Text)
const language = await reverieClient.identify_language_by_text({
text: "Vanakkam",
});Parameters:
text(string, required): The text whose language needs to be identified.
4. Translate Text
const translation = await reverieClient.translate({
text: "Namaste",
src_lang: "hi",
tgt_lang: "ta",
});Parameters:
text(string, required): The text to translate.src_lang(string, required): The source language code.tgt_lang(string, required): The target language code.domain(string, optional): The translation domain (default is "generic").
5. Speech-to-Text (Batch Processing)
const sttResult = await reverieClient.transcribeAudio({
audioFile: myAudioFile,
language: "hi",
subtitles: "true",
});Parameters:
audioFile(File, required): The audio file to be transcribed.src_lang(string, required): The language code of the speech.domain(string, optional): The domain of speech recognition (default is "generic").
6. Text-to-Speech
const audioBlob = await reverieClient.text_to_speech({
text: "Namaste Duniya!",
speaker: "default",
speed: 1.0,
pitch: 1.0,
});Parameters:
text(string, required): The text to convert into speech.speaker(string, required): The speaker voice to use.speed(number, optional): The speech speed (default is 1.0).pitch(number, optional): The pitch of the speech (default is 1.0).format(string, optional): The output format (default is "WAV").
7. Initialize Speech-to-Text Streaming
await reverieClient.init_stt({
src_lang: "hi",
callback: (event) => {
// Handle STT event
},
});Parameters:
src_lang(string, required): The language code for speech recognition.callback(function, required): The function to handle STT events.element(DOM element, optional): The element to insert transcribed text.domain(string, optional): The domain of speech recognition.silence(number, optional): The silence detection threshold.continuous(boolean, optional): Whether the STT should continue after detecting silence.logging(boolean, optional): Whether to enable logging.timeout(number, optional): Timeout duration in seconds.
8. Start/Stop STT Streaming
await reverieClient.start_stt();
await reverieClient.stop_stt();No parameters required.
9. Document Translation
const translationResult = await reverieClient.translateDocument({
sourceLanguage: "english",
targetLanguage: "hindi",
uploadedFile: myDocumentFile,
});Parameters:
sourceLanguage(string, required): The language code of the source document.targetLanguage(string, required): The language code for the translated document.uploadedFile(File, required): The document file to be translated.
10. Optical Character Recognition
const ocrResult = await reverieClient.uploadDocument({
file: myDocumentFile,
file_type: "img",
selectedLanguages: "en",
ocrType: "only_ocr",
});Parameters:
file(File, required): The PDF or image file to processfile_type(string, required): Type of file (pdforimg)targetLanguage(string, required): The language code of the document.ocrType(File, required): Type of OCR processing (layout_ocroronly_ocr)
10. Language Identification (Voice)
const language = await reverieClient.uploadAudio({
file: myAudioFile,
});Parameters:
file(File, required): Local audio file’s path to obtain the transcript.Note - file length should be equal to or less than 120 seconds (2 minutes).
License
MIT License
Copyright (c) 2025 Reverie Language Technologies
9 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
11 months ago
11 months ago