1.5.0 • Published 3 months ago

@solomonai/cache v1.5.0

Weekly downloads
-
License
MIT
Repository
-
Last release
3 months ago

Battle-tested, strongly typed caching with metrics and tracing out of the box.

Features

  • Tiered caching
  • Memory Cache
  • Cloudflare Cache
  • Cloudflare KV (todo)
  • Cloudflare R2 (todo)
  • Emit metrics
  • Typescript: Fully typesafe
  • Tiered Cache: Multiple caches in series to fall back on
  • Metrics: Middleware for collecting metrics
  • Stale-While-Revalidate: Async loading of data from your origin
  • Encryption: Middleware for automatic encryption of cache values
  • Composable: Mix and match primitives to build what you need

Quickstart

npm install @solomonai/cache
import {
  createCache,
  DefaultStatefulContext,
  Namespace,
} from '@solomonai/cache'
import { MemoryStore, CloudflareStore } from '@solomonai/cache/stores'

// Only required in stateful environments.
// Cloudflare workers or Vercel provide an executionContext for you.
const ctx = new DefaultStatefulContext()

type User = {
  id: string
  email: string
}

type Post = {
  slug: string
  title: string
  content: string
  publishedAt: Date
}

const fresh = 60_000
const stale = 900_000

const memory = new MemoryStore({
  persistentMap: new Map(),
})

const cloudflare = new CloudflareStore({
  cloudflareApiKey: 'CLOUDFLARE_API_KEY',
  zoneId: 'CLOUDFLARE_ZONE_ID',
  domain: 'my-domain-on-cloudflare',
})

const cache = createCache({
  account: new Namespace<Account>(ctx, {
    stores: [memory],
    fresh,
    stale,
  }),
  user: new Namespace<User>(ctx, {
    stores: [memory, cloudflare],
    fresh,
    stale,
  }),
})

await cache.user.set('chronark', { id: 'chronark', email: 'iykyk' })

// This is fully typesafe and will check the stores in the above defined order.
const user = await cache.user.get('chronark')

Stale while revalidate with origin refresh

Add your database query and the cache will return the stale data while revalidating the data in the background.

const user = await cache.user.swr('chronark', async (id) => {
  return await db.query.users.findFirst({
    where: (table, { eq }) => eq(table.id, id),
  })
})

Motivation

Everyone needs caching, but it’s often poorly implemented. Not from a technical perspective but from a usability perspective. Caching should be easy to use, typesafe, and composable.

How caching looks like in many applications:

const cache = new Some3rdPartyCache(...)

type User = { email: string };

let user = await cache.get("userId") as User | undefined | null;
if (!user){
  user = await database.get(...)
  await cache.set("userId", user, Date.now() + 60_000)
}

// use user

There are a few annoying things about this code:

  • Manual type casting
  • No support for stale-while-revalidate
  • Only checks a single cache

Most people would build a small wrapper around this to make it easier to use and so did we: This library is the result of a rewrite of our own caching layer after some developers were starting to replicate it. It’s used in production by Solomon AI and others.

Quickstart

Installation

npm install @solomonai/cache

Basic Usage

import {
  createCache,
  DefaultStatefulContext,
  Namespace,
} from '@solomonai/cache'
import { MemoryStore, CloudflareStore } from '@solomonai/cache/stores'

// Only required in stateful environments.
// Cloudflare workers or Vercel provide an executionContext for you.
const ctx = new DefaultStatefulContext()

type User = {
  id: string
  email: string
}

type Post = {
  slug: string
  title: string
  content: string
  publishedAt: Date
}

const fresh = 60_000
const stale = 900_000

const memory = new MemoryStore({
  persistentMap: new Map(),
})

const cloudflare = new CloudflareStore({
  cloudflareApiKey: 'CLOUDFLARE_API_KEY',
  zoneId: 'CLOUDFLARE_ZONE_ID',
  domain: 'my-domain-on-cloudflare',
})

const cache = createCache({
  account: new Namespace<Account>(ctx, {
    stores: [memory],
    fresh,
    stale,
  }),
  user: new Namespace<User>(ctx, {
    stores: [memory, cloudflare],
    fresh,
    stale,
  }),
})

await cache.user.set('chronark', { id: 'chronark', email: 'iykyk' })

// This is fully typesafe and will check the stores in the above defined order.
const user = await cache.user.get('chronark')

Concepts

Namespaces

Namespaces are a way to define the type of data in your cache and apply settings to it. They are used to ensure that you don’t accidentally store the wrong type of data in a cache, which otherwise can happen easily when you’re changing your data structures.

Each namespace requires a type parameter and is instantiated with a set of stores and cache settings.

Constructor

new Namespace<TValue>(ctx, opts)
  • TValue: The type of data stored in this namespace.

    type User = {
      email: string
    }
  • ctx: An execution context, such as a request or a worker instance.

    interface Context {
      waitUntil: (p: Promise<unknown>) => void
    }

    On Cloudflare workers or Vercel edge functions, you receive a context from the fetch handler. Otherwise, you can use:

    import { DefaultStatefulContext } from '@solomonai/cache'
    const ctx = new DefaultStatefulContext()
  • opts: NamespaceOptions

    • stores: Store[] (required)

      An array of stores to use for this namespace. When providing multiple stores, the cache will be checked in order of the array until a value is found or all stores have been checked.

      You should order the stores from fastest to slowest, so that the fastest store is checked first.

    • fresh: number

      The time in milliseconds that a value is considered fresh. Cache hits within this time will return the cached value. Must be less than stale.

    • stale: number

      The time in milliseconds that a value is considered stale. Cache hits within this time will return the cached value and trigger a background refresh. Must be greater than fresh.

Example Namespace with Two Stores

import {
  Namespace,
  DefaultStatefulContext,
  MemoryStore,
  CloudflareStore,
} from '@solomonai/cache'

type User = {
  email: string
}

const memory = new MemoryStore({
  persistentMap: new Map(),
})

const cloudflare = new CloudflareStore({
  cloudflareApiKey: c.env.CLOUDFLARE_API_KEY,
  zoneId: c.env.CLOUDFLARE_ZONE_ID,
  domain: 'cache.repo.dev',
})

const ctx = new DefaultStatefulContext()

const namespace = new Namespace<User>(ctx, {
  stores: [memory, cloudflare],
  fresh: 60_000,
  stale: 900_000,
})

Tiered Cache

Different caches have different characteristics, some may be fast but volatile, others may be slow but persistent. By using a tiered cache, you can combine the best of both worlds. In almost every case, you want to use a fast in-memory cache as the first tier. There is no reason not to use it, as it doesn’t add any latency to your application.

The goal of this implementation is that it’s invisible to the user. Everything behaves like a single cache. You can add as many tiers as you want.

Reading from the Cache

When using a tiered cache, all stores will be checked in order until a value is found or all stores have been checked. If a value is found in a store, it will be backfilled to the previous stores in the list asynchronously.

Writing to the Cache

When setting or deleting a key, every store will be updated in parallel.

Example

import {
  DefaultStatefulContext,
  Namespace,
  createCache,
} from '@solomonai/cache'
import { CloudflareStore, MemoryStore } from '@solomonai/cache/stores'

/**
 * In serverless you'd get this from the request handler
 */
const ctx = new DefaultStatefulContext()

/**
 * Define the type of your data, or perhaps generate the types from your database
 */
type User = {
  id: string
  email: string
}

const memory = new MemoryStore({ persistentMap: new Map() })

const cloudflare = new CloudflareStore({
  domain: 'cache.repo.dev',
  zoneId: env.CLOUDFLARE_ZONE_ID!,
  cloudflareApiKey: env.CLOUDFLARE_API_KEY!,
})

const userNamespace = new Namespace<User>(ctx, {
  stores: [memory, cloudflare],
  fresh: 60_000,
  stale: 300_000,
})

const cache = createCache({ user: userNamespace })

async function main() {
  await cache.user.set('userId', { id: 'userId', email: 'user@email.com' })

  const user = await cache.user.get('userId')

  console.log(user)
}

main()

Stale-While-Revalidate

To make data fetching as easy as possible, the cache offers a swr method, that acts as a pull-through cache. If the data is fresh, it will be returned from the cache. If it’s stale, it will be returned from the cache and a background refresh will be triggered. If it’s not in the cache, the data will be synchronously fetched from the origin.

const user = await cache.user.swr('userId', async (userId) => {
  return database.exec('SELECT * FROM users WHERE id = ?', userId)
})

Parameters:

  • key: string
    The cache key to fetch, just like when using .get(key)

  • loadFromOrigin: (key: string) => Promise<TValue | undefined>
    A callback function that will be called to fetch the data from the origin if it’s stale or not in the cache.

Example

import {
  DefaultStatefulContext,
  Namespace,
  createCache,
} from '@solomonai/cache'
import { CloudflareStore, MemoryStore } from '@solomonai/cache/stores'

/**
 * In serverless you'd get this from the request handler
 */
const ctx = new DefaultStatefulContext()

/**
 * Define the type of your data, or perhaps generate the types from your database
 */
type User = {
  id: string
  email: string
}

const memory = new MemoryStore({ persistentMap: new Map() })

const cloudflare = new CloudflareStore({
  domain: 'cache.repo.dev',
  zoneId: env.CLOUDFLARE_ZONE_ID!,
  cloudflareApiKey: env.CLOUDFLARE_API_KEY!,
})

const userNamespace = new Namespace<User>(ctx, {
  stores: [memory, cloudflare],
  fresh: 60_000,
  stale: 300_000,
})

const cache = createCache({ user: userNamespace })

async function main() {
  await cache.user.set('userId', { id: 'userId', email: 'user@email.com' })

  const user = await cache.user.swr('userId', async (userId) => {
    // @ts-expect-error we don't have a db in this example
    return db.getUser(userId)
  })

  console.info(user)
}

main()

Context

In serverless functions, it’s not always trivial to run some code after you have returned a response. This is where the context comes in. It allows you to register promises that should be awaited before the function is considered done. Fortunately, many providers offer a way to do this.

To be used in this cache library, the context must implement the following interface:

export interface Context {
  waitUntil: (p: Promise<unknown>) => void
}

For stateful applications, you can use the DefaultStatefulContext:

import { DefaultStatefulContext } from '@solomonai/cache'
const ctx = new DefaultStatefulContext()

Vendor-specific documentation:

Primitives

Stores

Stores are the underlying storage mechanisms for your cache. They can be in-memory, on-disk, or remote. You can use multiple stores in a namespace to create a tiered cache. The order of stores in a namespace is important. The cache will check the stores in order until it finds a value or all stores have been checked.

You can create your own store by implementing the Store interface. Read more.

Available Stores:

Memory

The memory store is an in-memory cache that is fast but only as persistent as your memory. In serverless environments, this means that the cache is lost when the function is cold-started.

import { MemoryStore } from '@solomonai/cache/stores'

const memory = new MemoryStore({
  persistentMap: new Map(),
})

Ensure that the Map is instantiated in a persistent scope of your application. For Cloudflare workers or serverless functions in general, this is the global scope.

Cloudflare

The Cloudflare store uses Cloudflare’s Cache API to store cache values. This is a remote cache that is shared across all instances of your worker but isolated per datacenter. It’s still pretty fast but needs a network request to access the cache.

import { CloudflareStore } from '@solomonai/cache/stores'

const cloudflare = new CloudflareStore({
  cloudflareApiKey: '<CLOUDFLARE_API_KEY>',
  zoneId: '<CLOUDFLARE_ZONE_ID>',
  domain: '<YOUR_CACHE_DOMAIN>',
  cacheBuster: '<CACHE_STORE_VERSION>',
})

Parameters:

  • cloudflareApiKey: string
    The Cloudflare API key to use for cache purge operations. The API key must have the Cache Purge permission. You can create a new API token with this permission in the Cloudflare dashboard.

  • zoneId: string
    The Cloudflare zone ID where the cache is stored. You can find this in the Cloudflare dashboard.

  • domain: string
    The domain to use for the cache. This must be a valid domain within the zone specified by zoneId. If the domain is not valid in the specified zone, the cache will not work and Cloudflare does not provide an error message. You will just get cache misses.

    For example, we use domain: "cache.repo.dev" in our API.

  • cacheBuster: string
    Default: "v1"
    As your data changes, it is important to keep backwards compatibility in mind. If your cached values are no longer backwards compatible, it can cause problems. For example, when a value changes from optional to required. In these cases, you should purge the entire cache by setting a new cacheBuster value. The cacheBuster is used as part of the cache key and changes ensure you are not reading old data anymore.

Upstash Redis

The Upstash Redis store uses the Serverless Redis offering from Upstash to store cache values. This is a serverless database with Redis compatibility.

import { UpstashRedisStore } from '@solomonai/cache/stores'
import { Redis } from '@upstash/redis'

const redis = new Redis({
  url: '<UPSTASH_REDIS_REST_URL>',
  token: '<UPSTASH_REDIS_REST_TOKEN>',
})

const redisStore = new UpstashRedisStore({
  redis,
})

Parameters:

  • redis: Redis
    The Upstash Redis client to use for cache operations.

libSQL (Turso)

The libSQL store can use an embedded SQLite database, or a remote Turso database to store cache values.

You must create a table in your Turso database with the following schema:

CREATE TABLE IF NOT EXISTS cache (
  key TEXT PRIMARY KEY,
  value TEXT NOT NULL,
  freshUntil INTEGER NOT NULL,
  staleUntil INTEGER NOT NULL
);

Parameters:

  • client: Client (required)
    The libSQL client to use for cache operations.

  • tableName: string
    Default: "cache"
    The name of the database table to use for cache operations.

Middlewares

Middlewares enhance the functionality of your cache stores by adding features like metrics collection and encryption.

Metrics

The metrics middleware collects metrics about cache hits, misses, and backfills. It’s useful for debugging and monitoring your cache usage.

Using the metrics middleware requires a metrics sink. You can build your own sink by implementing the Metrics interface. For example, we are using Axiom.

interface Metrics<
  TMetric extends Record<string, unknown> = Record<string, unknown>,
> {
  /**
   * Emit a new metric event
   */
  emit(metric: TMetric): void

  /**
   * flush persists all metrics to durable storage.
   * You must call this method before your application exits, metrics are not persisted automatically.
   */
  flush(): Promise<void>
}

Usage:

Wrap your store with the metrics middleware to start collecting metrics.

import { withMetrics } from "@solomonai/cache/middleware";

const metricsSink = // your metrics sink
const metricsMiddleware = withMetrics(metricsSink);

const memory = new MemoryStore({ persistentMap: new Map() });

new Namespace<User>(ctx, {
  // Wrap the store with the metrics middleware
  stores: [metricsMiddleware.wrap(memory)],
  // ...
});

Emitted Metrics:

type Metric =
  | {
      metric: 'metric.cache.read'
      key: string
      hit: boolean
      status?: 'fresh' | 'stale'
      latency: number
      tier: string
      namespace: string
    }
  | {
      metric: 'metric.cache.write'
      key: string
      latency: number
      tier: string
      namespace: string
    }
  | {
      metric: 'metric.cache.remove'
      key: string
      latency: number
      tier: string
      namespace: string
    }

Encryption

When dealing with sensitive data, you might want to encrypt your cache values at rest. You can encrypt a store by wrapping it with the EncryptedStore.

All you need is a 32-byte base64-encoded key. You can generate one with OpenSSL:

Generate a New Encryption Key

openssl rand -base64 32

Example Usage

import { withEncryption } from '@solomonai/cache'

const encryptionKey = '<BASE64_KEY>'
const encryptionMiddleware = await withEncryption(encryptionKey)

const memory = new MemoryStore({
  /* ... */
}) // or any other store

const store = encryptionMiddleware.wrap(memory)

Values will be encrypted using AES-256-GCM and persisted in the underlying store.

You can rotate your encryption key at any point, but this will essentially purge the cache.

A SHA256 hash of the encryption key is used in the cache key to allow for rotation without causing decryption errors. (https://mintlify.com/preview-request?utm_campaign=poweredBy&utm_medium=docs&utm_source=repo)

On this page