0.0.9 • Published 2 years ago

@ssibrahimbas/core v0.0.9

Weekly downloads
-
License
MIT
Repository
github
Last release
2 years ago

Maintainers

MaintainerGitHubWeb
Sami Salih İbrahimbaşssibrahimbas@ssibrahimbas

Installation

With npm

$ npm install @ssibrahimbas/core

Or with yarn:

$ yarn add @ssibrahimbas/core

Usage

For TypeScript

import {Queue, PriorityQueue, Stack} from "@ssibrahimbas/core";

interface IQueueType {
    name: string;
}
const myQueue = new Queue<IQueueType>();

interface IPriorityQueueType {
    priority: number;
    name: string;
}
const myPriorityQueue = new PriorityQueue<IPriorityQueue>((a, b) => a.priority - b.priority);

interface IstackType {
    url: string;
}
const pageHistoryStack = new Stack<IstackType>();

for JavaScript

// import {Queue, PriorityQueue, Stack} from "@ssibrahimbas/core"; // for module
const {Queue, PriorityQueue, Stack} = require("@ssibrahimbas/core"); // for commonjs

const myQueue = new Queue();
const myPriorityQueue = new PriorityQueue((a,b) => a - b);
const myStack = new Stack();

API

Queue

Description:

The feature of queue is FIFO. That is, fist in, first out.

Type-Java-Script itself has no queue structure. However, we may want to queue some transactions for various reasons. We can even process according to the importance of these queses, see: PriorityQueue.

That's why this post and you are here. @ssibrahimbas/core It, gives the queue structure to Type-Java-Script.

PriorityQueue

Description

FIFO is a very nice rule, but you may not need it. Instead, the priority may need to be delisted first.

We can compare this to the fact that in any queue (for example, the hospital queue), the elderly and children get ahead of other people first.

While this is a very nice feature, it requires more performance than the Queue itself. Because the list must be reordered every time an element is added. You may have some peace of mind about this. We do the sorting on the insertion with BubbleSort, and it has a total O(logn) performance complexity. If we had used the sort` method instead, this complexity would have increased to O(n log n).

Its usage is exactly the same as Queue except for deletion and cloning. The structure running in the background changes.

Stack

Description:

Another data type not in JavaScript itself is Stack. The feature of stacks is LIFO. That is, last in, first out.

Thanks to this package, you can use the Stack data type on JavaScript.

QueueSize

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.size; // return 0
userQueue.enqueue({name: "sami"}); // enqueue sami
userQueue.size // return 1

Returns the size of the queue

Returns: number

QueueEnqueue

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"}); // enqueue sami

Add element to queue

ParamType
elementT - your type

Returns: void

QueueDequeue

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"}); // enqueue sami
userQueue.dequeue(); // remove first element

Remove first element this queue - cf. FIFO

Returns: void

QueueDequeueByIndex

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"});
userQueue.enqueue({name: "john"});
userQueue.enqueue({name: "evan"});
userQueue.enqueue({name: "salih"});
userQueue.dequeueByIndex(2); // remove evan

remove element at specific index from this queue

Returns: boolean

QueueIsEmpty

const userQueue = new Queue<any>();
console.log(userQueue.isEmpty())

Is the queue empty?

Returns: boolean

QueuePeek

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"}); // enqueue sami
console.log(userQueue.peek())

// result -> {name: 'sami'}

Return first element from this queue

Returns: T

QueueLength

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"});
console.log(userQueue.length())

Returns the size of the queue - similar to size

Returns: number

QueueToArray

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"});
console.log(userQueue.toArray()) // [{name: 'sami'}]

Converts queue to array

Returns: Array<T>

QueueToString

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"});
console.log(userQueue.toString()) // "[{name: 'sami'}]"

QueueClone

type User = {
    name: string;
}
const userQueue = new Queue<User>();
userQueue.enqueue({name: "sami"});
const employeeQueue = userQueue.clone();
console.log(employeeQueue.toString()) // "[{name: 'sami'}]"

Clones the queue

Returns: QueueType<T>

QueuePriorityDequeue

type User = {
    name: string;
}
const userQueue = new PriorityQueue<User>((a,b) => a.priority - b.priority);
userQueue.enqueue({name: "sami", priority: 2});
userQueue.enqueue({name: "salih", priority: 3});
userQueue.enqueue({name: "mehmet", priority: 1});
userQueue.dequeue(); // remove salih
userQueue.dequeue(1); // remove mehmet

Remove first element or your index this queue - cf. FIFO

ParamType
indexnumber

Returns: void

QueuePriorityClone

type User = {
    name: string;
}
const userQueue = new PriorityQueue<User>((a,b) => a.priority - b.priority);
userQueue.enqueue({name: "sami", priority: 2});
userQueue.enqueue({name: "salih", priority: 3});
const employeeQueue = userQueue.clone();
console.log(employeeQueue.toString()) // "[{name: "salih", priority: 3}, {name: "sami", priority: 2}]"

Clones the queue

Returns: PriorityQueueType<T>

StackPush

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});

Add element to stack

ParamType
elementT - your type

Returns: void

StackLength

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.length())

Returns the size of the stack

Returns: number

StackPeek

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.peek())

// result -> {url: 'www.itemsatis.com'}

Return first element from this stack

Returns: T

StackIsEmpty

const pageStack = new Stack<any>();
console.log(pageStack.isEmpty())

Is the stack empty?

Returns: boolean

StackPop

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
pageStack.push({url: "www.itempazar.com"});
const last = pageStack.pop(); // return last element and remove

Remove last element this stack - cf. LIFO

Returns: T

StackReverse

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
pageStack.push({url: "www.itempazar.com"});
const last = pageStack.pop(); // return last element and remove

reverses the stack.

For the above example: the first element declared 'www.itemsatis.com' will be the last element and will appear first in a possible pop call.

Returns: void

StackToArray

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.toArray()) // [{url: 'www.itemsatis.com'}]

Converts queue to stack

Returns: Array<T>

StackToString

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.toString()) // "[{url: "www.itemsatis.com"}]"

Converts queue to string

Returns: string

StackClone

type Page = {
    url: string;
}
const pageStack = new Stack<Page>();
pageStack.push({url: "www.itemsatis.com"});
const pageStackClone = pageStack.clone();
console.log(pageStackClone.toString()) // "[{url: "www.itemsatis.com"}]"

Clones the queue

Returns: StackType<T>