@stdlib/blas-ext-base-ssort2sh v0.2.2
ssort2sh
Simultaneously sort two single-precision floating-point strided arrays based on the sort order of the first array using Shellsort.
Installation
npm install @stdlib/blas-ext-base-ssort2shUsage
var ssort2sh = require( '@stdlib/blas-ext-base-ssort2sh' );ssort2sh( N, order, x, strideX, y, strideY )
Simultaneously sorts two single-precision floating-point strided arrays based on the sort order of the first array x using Shellsort.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );
var y = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
ssort2sh( x.length, 1.0, x, 1, y, 1 );
console.log( x );
// => <Float32Array>[ -4.0, -2.0, 1.0, 3.0 ]
console.log( y );
// => <Float32Array>[ 3.0, 1.0, 0.0, 2.0 ]The function has the following parameters:
- N: number of indexed elements.
- order: sort order. If
order < 0.0, the input strided arrayxis sorted in decreasing order. Iforder > 0.0, the input strided arrayxis sorted in increasing order. Iforder == 0.0, the input strided arrays are left unchanged. - x: first input
Float32Array. - strideX:
xindex increment. - y: second input
Float32Array. - strideY:
yindex increment.
The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to sort every other element
var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );
var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );
var y = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
var N = floor( x.length / 2 );
ssort2sh( N, -1.0, x, 2, y, 2 );
console.log( x );
// => <Float32Array>[ 3.0, -2.0, 1.0, -4.0 ]
console.log( y );
// => <Float32Array>[ 2.0, 1.0, 0.0, 3.0 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );
// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length/2 );
// Sort every other element...
ssort2sh( N, -1.0, x1, 2, y1, 2 );
console.log( x0 );
// => <Float32Array>[ 1.0, 4.0, 3.0, 2.0 ]
console.log( y0 );
// => <Float32Array>[ 0.0, 3.0, 2.0, 1.0 ]ssort2sh.ndarray( N, order, x, strideX, offsetX, y, strideY, offsetY )
Simultaneously sorts two single-precision floating-point strided arrays based on the sort order of the first array x using Shellsort and alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0 ] );
var y = new Float32Array( [ 0.0, 1.0, 2.0, 3.0 ] );
ssort2sh.ndarray( x.length, 1.0, x, 1, 0, y, 1, 0 );
console.log( x );
// => <Float32Array>[ -4.0, -2.0, 1.0, 3.0 ]
console.log( y );
// => <Float32Array>[ 3.0, 1.0, 0.0, 2.0 ]The function has the following additional parameters:
- offsetX:
xstarting index. - offsetY:
ystarting index.
While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access only the last three elements of x
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
var y = new Float32Array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 ] );
ssort2sh.ndarray( 3, 1.0, x, 1, x.length-3, y, 1, y.length-3 );
console.log( x );
// => <Float32Array>[ 1.0, -2.0, 3.0, -6.0, -4.0, 5.0 ]
console.log( y );
// => <Float32Array>[ 0.0, 1.0, 2.0, 5.0, 3.0, 4.0 ]Notes
- If
N <= 0ororder == 0.0, both functions leavexandyunchanged. - The algorithm distinguishes between
-0and+0. When sorted in increasing order,-0is sorted before+0. When sorted in decreasing order,-0is sorted after+0. - The algorithm sorts
NaNvalues to the end. When sorted in increasing order,NaNvalues are sorted last. When sorted in decreasing order,NaNvalues are sorted first. - The algorithm has space complexity
O(1)and worst case time complexityO(N^(4/3)). - The algorithm is efficient for shorter strided arrays (typically
N <= 50). - The algorithm is unstable, meaning that the algorithm may change the order of strided array elements which are equal or equivalent (e.g.,
NaNvalues). - The input strided arrays are sorted in-place (i.e., the input strided arrays are mutated).
Examples
var round = require( '@stdlib/math-base-special-round' );
var randu = require( '@stdlib/random-base-randu' );
var Float32Array = require( '@stdlib/array-float32' );
var ssort2sh = require( '@stdlib/blas-ext-base-ssort2sh' );
var rand;
var sign;
var x;
var y;
var i;
x = new Float32Array( 10 );
y = new Float32Array( 10 ); // index array
for ( i = 0; i < x.length; i++ ) {
rand = round( randu()*100.0 );
sign = randu();
if ( sign < 0.5 ) {
sign = -1.0;
} else {
sign = 1.0;
}
x[ i ] = sign * rand;
y[ i ] = i;
}
console.log( x );
console.log( y );
ssort2sh( x.length, -1.0, x, -1, y, -1 );
console.log( x );
console.log( y );References
- Shell, Donald L. 1959. "A High-Speed Sorting Procedure." Communications of the ACM 2 (7). Association for Computing Machinery: 30–32. doi:10.1145/368370.368387.
- Sedgewick, Robert. 1986. "A new upper bound for Shellsort." Journal of Algorithms 7 (2): 159–73. doi:10.1016/0196-6774(86)90001-5.
- Ciura, Marcin. 2001. "Best Increments for the Average Case of Shellsort." In Fundamentals of Computation Theory, 106–17. Springer Berlin Heidelberg. doi:10.1007/3-540-44669-9_12.
See Also
@stdlib/blas-ext/base/dsort2sh: simultaneously sort two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort.@stdlib/blas-ext/base/gsort2sh: simultaneously sort two strided arrays based on the sort order of the first array using Shellsort.@stdlib/blas-ext/base/ssortsh: sort a single-precision floating-point strided array using Shellsort.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.