@stdlib/lapack-base-dpttrf v0.1.0
dpttrf
Compute the
L * D * L^Tfactorization of a real symmetric positive definite tridiagonal matrixA.
Usage
var dpttrf = require( '@stdlib/lapack-base-dpttrf' );dpttrf( N, D, E )
Computes the L * D * L^T factorization of a real symmetric positive definite tridiagonal matrix A.
var Float64Array = require( '@stdlib/array-float64' );
var D = new Float64Array( [ 4.0, 5.0, 6.0 ] );
var E = new Float64Array( [ 1.0, 2.0 ] );
dpttrf( 3, D, E );
// D => <Float64Array>[ 4, 4.75, ~5.15789 ]
// E => <Float64Array>[ 0.25, ~0.4210 ]The function has the following parameters:
- N: order of matrix
A. - D: the
Ndiagonal elements ofAas aFloat64Array. - E: the N-1 subdiagonal elements of
Aas aFloat64Array.
Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var D0 = new Float64Array( [ 0.0, 4.0, 5.0, 6.0 ] );
var E0 = new Float64Array( [ 0.0, 1.0, 2.0 ] );
// Create offset views...
var D1 = new Float64Array( D0.buffer, D0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var E1 = new Float64Array( E0.buffer, E0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dpttrf( 3, D1, E1 );
// D0 => <Float64Array>[ 0.0, 4.0, 4.75, ~5.15789 ]
// E0 => <Float64Array>[ 0.0, 0.25, ~0.4210 ]dpttrf.ndarray( N, D, strideD, offsetD, E, strideE, offsetE )
Computes the L * D * L^T factorization of a real symmetric positive definite tridiagonal matrix A using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var D = new Float64Array( [ 4.0, 5.0, 6.0 ] );
var E = new Float64Array( [ 1.0, 2.0 ] );
dpttrf.ndarray( 3, D, 1, 0, E, 1, 0 );
// D => <Float64Array>[ 4, 4.75, ~5.15789 ]
// E => <Float64Array>[ 0.25, ~0.4210 ]The function has the following additional parameters:
- strideD: stride length for
D. - offsetD: starting index for
D. - strideE: stride length for
E. - offsetE: starting index for
E.
While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float64Array = require( '@stdlib/array-float64' );
var D = new Float64Array( [ 0.0, 4.0, 5.0, 6.0 ] );
var E = new Float64Array( [ 0.0, 1.0, 2.0 ] );
dpttrf.ndarray( 3, D, 1, 1, E, 1, 1 );
// D => <Float64Array>[ 0.0, 4.0, 4.75, ~5.15789 ]
// E => <Float64Array>[ 0.0, 0.25, ~0.4210 ]Notes
Both functions mutate the input arrays
DandE.Both functions return a status code indicating success or failure. A status code indicates the following conditions:
0: factorization was successful.<0: the k-th argument had an illegal value, where-kequals the status code value.0 < k < N: the leading principal minor of orderkis not positive and factorization could not be completed, wherekequals the status code value.N: the leading principal minor of orderNis not positive, and factorization was completed.
Examples
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dpttrf = require( '@stdlib/lapack-base-dpttrf' );
var opts = {
'dtype': 'float64'
};
var D = discreteUniform( 5, 1, 5, opts );
console.log( D );
var E = discreteUniform( D.length-1, 1, 5, opts );
console.log( E );
// Perform the `L * D * L^T` factorization:
var info = dpttrf( D.length, D, E );
console.log( D );
console.log( E );
console.log( info );C APIs
Installation
npm install @stdlib/lapack-base-dpttrfUsage
TODOTODO
TODO.
TODOTODO
TODOExamples
TODONotice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.
1 year ago