@stdlib/math-base-tools-lucaspoly v0.2.2
Lucas Polynomial
Evaluate a Lucas polynomial.
A Lucas polynomial is expressed according to the following recurrence relation
Alternatively, if L(n,k)
is the coefficient of x^k
in L_n(x)
, then
We can extend Lucas polynomials to negative n
using the identity
Installation
npm install @stdlib/math-base-tools-lucaspoly
Usage
var lucaspoly = require( '@stdlib/math-base-tools-lucaspoly' );
lucaspoly( n, x )
Evaluates a Lucas polynomial at a value x
.
var v = lucaspoly( 5, 2.0 ); // => 2^5 + 5*2^3 + 5*2
// returns 82.0
lucaspoly.factory( n )
Uses code generation to generate a function
for evaluating a Lucas polynomial.
var polyval = lucaspoly.factory( 5 );
var v = polyval( 1.0 ); // => 1^5 + 5*1^3 + 5
// returns 11.0
v = polyval( 2.0 ); // => 2^5 + 5*2^3 + 5*2
// returns 82.0
Notes
- For hot code paths, a compiled function will be more performant than
lucaspoly()
. - While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict content security policy (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
Examples
var lucaspoly = require( '@stdlib/math-base-tools-lucaspoly' );
var i;
// Compute the negaLucas and Lucas numbers...
for ( i = -76; i < 77; i++ ) {
console.log( 'L_%d = %d', i, lucaspoly( i, 1.0 ) );
}
See Also
@stdlib/math-base/tools/evalpoly
: evaluate a polynomial using double-precision floating-point arithmetic.@stdlib/math-base/tools/fibpoly
: evaluate a Fibonacci polynomial.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.