@stdlib/math-strided-special-sfloor v0.2.2
sfloor
Round each element in a single-precision floating-point strided array toward negative infinity.
Installation
npm install @stdlib/math-strided-special-sfloor
Usage
var sfloor = require( '@stdlib/math-strided-special-sfloor' );
sfloor( N, x, strideX, y, strideY )
Rounds each element in a single-precision floating-point strided array x
toward negative infinity and assigns the results to elements in a single-precision floating-point strided array y
.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9 ] );
// Perform operation in-place:
sfloor( x.length, x, 1, x, 1 );
// x => <Float32Array>[ -2.0, 1.0, 3.0, 4.0, 5.0 ]
The function accepts the following arguments:
- N: number of indexed elements.
- x: input
Float32Array
. - strideX: index increment for
x
. - y: output
Float32Array
. - strideY: index increment for
y
.
The N
and stride
parameters determine which elements in x
and y
are accessed at runtime. For example, to index every other value in x
and to index the first N
elements of y
in reverse order,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor( 3, x, 2, y, -1 );
// y => <Float32Array>[ 5.0, 3.0, -2.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
sfloor( 3, x1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, -7.0, 4.0, 1.0 ]
sfloor.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Rounds each element in a single-precision floating-point strided array x
toward negative infinity and assigns the results to elements in a single-precision floating-point strided array y
using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float32Array>[ -2.0, 1.0, 3.0, 4.0, 5.0 ]
The function accepts the following additional arguments:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer
, the offsetX
and offsetY
parameters support indexing semantics based on starting indices. For example, to index every other value in x
starting from the second value and to index the last N
elements in y
,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ -1.1, 1.1, 3.8, 4.5, 5.9, -6.7 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
sfloor.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, -7.0, 4.0, 1.0 ]
Examples
var uniform = require( '@stdlib/random-base-uniform' );
var Float32Array = require( '@stdlib/array-float32' );
var sfloor = require( '@stdlib/math-strided-special-sfloor' );
var x = new Float32Array( 10 );
var y = new Float32Array( 10 );
var i;
for ( i = 0; i < x.length; i++ ) {
x[ i ] = uniform( -10.0, 10.0 );
}
console.log( x );
console.log( y );
sfloor.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( y );
C APIs
Usage
#include "stdlib/math/strided/special/sfloor.h"
stdlib_strided_sfloor( N, *X, strideX, *Y, strideY )
Rounds each element in a single-precision floating-point strided array X
toward negative infinity and assigns the results to elements in a single-precision floating-point strided array Y
.
#include <stdint.h>
const float X[] = { -1.5, 2.3, -3.9, 4.2, -5.0, -6.0, 7.9, -8.1 };
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
const int64_t N = 4;
stdlib_strided_sfloor( N, X, 2, Y, 2 );
The function accepts the following arguments:
- N:
[in] int64_t
number of indexed elements. - X:
[in] float*
input array. - strideX:
[in] int64_t
index increment forX
. - Y:
[out] float*
output array. - strideY:
[in] int64_t
index increment forY
.
void stdlib_strided_sfloor( const int64_t N, const float *X, const int64_t strideX, float *Y, const int64_t strideY );
Examples
#include "stdlib/math/strided/special/sfloor.h"
#include <stdint.h>
#include <stdio.h>
int main( void ) {
// Create an input strided array:
const float X[] = { -1.5, 2.3, -3.9, 4.2, -5.0, -6.0, 7.9, -8.1 };
// Create an output strided array:
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
const int64_t N = 4;
// Specify the stride lengths:
const int64_t strideX = 2;
const int64_t strideY = 2;
// Compute the results:
stdlib_strided_sfloor( N, X, strideX, Y, strideY );
// Print the results:
for ( int i = 0; i < 8; i++ ) {
printf( "Y[ %i ] = %f\n", i, Y[ i ] );
}
}
See Also
@stdlib/math-strided/special/dfloor
: round each element in a double-precision floating-point strided array toward negative infinity.@stdlib/math-strided/special/floor
: round each element in a strided array toward negative infinity.@stdlib/math-strided/special/sceil
: round each element in a single-precision floating-point strided array toward positive infinity.@stdlib/math-strided/special/strunc
: round each element in a single-precision floating-point strided array toward zero.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.