@stdlib/stats-base-dists-cauchy-entropy v0.2.2
Entropy
Cauchy distribution differential entropy.
The differential entropy for a Cauchy random variable with location parameter x0 and scale parameter Ɣ > 0 is
Installation
npm install @stdlib/stats-base-dists-cauchy-entropyUsage
var entropy = require( '@stdlib/stats-base-dists-cauchy-entropy' );entropy( x0, gamma )
Returns the differential entropy of a Cauchy distribution with location parameter x0 and scale parameter gamma (in nats).
var v = entropy( 10.0, 5.0 );
// returns ~4.14
v = entropy( 7.0, 2.0 );
// returns ~3.224If provided NaN as any argument, the function returns NaN.
var v = entropy( NaN, 5.0 );
// returns NaN
v = entropy( 20.0, NaN );
// returns NaNIf provided gamma <= 0, the function returns NaN.
var v = entropy( 1.0, -1.0 );
// returns NaN
v = entropy( 1.0, 0.0 );
// returns NaNExamples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var entropy = require( '@stdlib/stats-base-dists-cauchy-entropy' );
var gamma;
var x0;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
    x0 = randu() * 100.0;
    gamma = ( randu()*10.0 ) + EPS;
    v = entropy( x0, gamma );
    console.log( 'x0: %d, γ: %d, h(X;x0,γ): %d', x0.toFixed( 4 ), gamma.toFixed( 4 ), v.toFixed( 4 ) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.