1.0.1 • Published 1 year ago

@toshiara/special-beta v1.0.1

Weekly downloads
-
License
MIT
Repository
github
Last release
1 year ago

Beta Function / natural logarithm of the Beta function

Evaluates the beta function and the natural logarithm of the beta function.

The Beta function, also called the Euler integral, is defined as

\mathrm{Beta}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,\mathrm{d}t

It is related to the Gamma function via the following equation

\mathrm{Beta}(x, y) = \dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x + y)}

and

\ln \mathrm{Beta}(x,y)= \ln \Gamma(x) + \ln \Gamma(y) - \ln \Gamma(x+y)

This package supports both CommonJs and ES Modules.

Installation

$ npm install @toshiara/special-beta

Usage

// for CommonJs
const { beta, betaln } = require('@toshiara/special-beta');

// for ES Modules
import { beta, betaln } from '@toshiara/special-beta';

beta(x, y)

Evaluates the beta function.

beta(1.2, 2.4);
// returns 0.3068371659652535

beta(0.1, 0.3);
// returns 12.8305985363213

betaln(x, y)

Evaluates the beta function.

betaln(1, 2);
// returns -0.6931471805599453

betaln(1.2, 2.4);
// returns -1.181438076130887

License

MIT license.

1.0.1

1 year ago

1.0.0

1 year ago