ai-service-hub v3.0.6
AI Services Hub
A unified TypeScript/JavaScript library for seamless integration with multiple AI services, providing a consistent interface for various AI model providers.
Features
OpenAI
Chat completions, embeddings, audio transcription, text-to-speech (TTS), and vision.DeepSeek
Chat with temperature control.Gemini
Chat using Google's Gemini engine.LM Studio
Chat completions, embeddings, and vision (image analysis).Ollama
Chat, content generation, embeddings, and model management.Qdrant
Vector database operations for storing and querying embeddings.Perplexity
Chat and other functionalities (interface analogous to other instances).
Unified Interface with GlobalInstance
The GlobalInstance
class provides a unified way to interact with all supported AI services through a single interface. This approach offers several benefits:
Key Benefits
- Single Entry Point: Manage all AI services through one instance
- Automatic Model Routing: Automatically routes requests to the appropriate service based on the model
- Consistent Error Handling: Unified error handling across all services
- Type Safety: Full TypeScript support for all operations
Basic Usage
import { GlobalInstance } from 'ai-services-hub';
// Initialize with your API keys
const ai = new GlobalInstance({
openAiKey: 'key1', // Only OpenAI
});
// Or multiple services
const ai2 = new GlobalInstance({
openAiKey: 'key1',
ollamaUrl: 'url1',
});
// Or all services
const ai3 = new GlobalInstance({
openAiKey: 'key1',
ollamaUrl: 'url1',
deepSeekKey: 'key2',
lmstudioUrl: 'url2',
perplexityKey: 'key3'
});
// Chat completion with auto-detection
const response = await ai.chat({
prompt: "What is TypeScript?",
systemPrompt: "You are a helpful assistant",
model: "gpt-4o-mini",
format: "text"
});
// Embeddings
const embedding = await ai.embedding({
prompt: "Text to embed",
model: "text-embedding-ada-002",
instance: "openai" // Optional
});
// Vision analysis
const visionResponse = await ai.vision({
prompt: "Describe this image",
base64Image: "...", // Base64 encoded image
systemPrompt: "Analyze the image carefully",
model: "gpt-4-vision-preview",
instance: "openai" // Optional
});
Auto-Detection Feature
The GlobalInstance
automatically detects the appropriate service based on the model:
// These will automatically route to the correct service
await ai.chat({
prompt: "Hello",
model: "gpt-4o", // Routes to OpenAI
format: "text"
});
await ai.chat({
prompt: "Hello",
model: "deepseek-chat", // Routes to DeepSeek
format: "text"
});
await ai.chat({
prompt: "Hello",
model: "sonar-pro", // Routes to Perplexity
format: "text"
});
Local Models with Ollama and LM Studio
The GlobalInstance seamlessly integrates with local model providers. Here's how to use Ollama and LM Studio:
Ollama Integration
const ai = new GlobalInstance({
ollamaUrl: 'http://localhost:11434', // Your Ollama endpoint
// ... other keys
});
// Chat with custom Ollama models
const chatResponse = await ai.chat({
prompt: "Explain quantum computing",
systemPrompt: "You are a physics expert",
model: "llama2", // Or any other Ollama model
format: "text",
instance: "ollama"
});
// Generate embeddings
const embedding = await ai.embedding({
prompt: "Text to embed",
model: "all-minilm", // Ollama's embedding model
instance: "ollama"
});
// Vision analysis with Ollama
const visionResult = await ai.vision({
prompt: "What's in this image?",
base64Image: "...", // Base64 encoded image
systemPrompt: "Describe in detail",
model: "llava", // Ollama's vision model
instance: "ollama"
});
LM Studio Integration
const ai = new GlobalInstance({
lmstudioUrl: 'http://localhost:1234', // Your LM Studio endpoint
// ... other keys
});
// Chat with local models
const localChat = await ai.chat({
prompt: "Explain neural networks",
systemPrompt: "You are an AI expert",
model: "mistral-7b-instruct", // Your loaded model in LM Studio
format: "text",
instance: "lmstudio"
});
// Local embeddings
const localEmbedding = await ai.embedding({
prompt: "Text for embedding",
model: "all-MiniLM-L6-v2", // Local embedding model
instance: "lmstudio"
});
// Vision with local models
const localVision = await ai.vision({
prompt: "Analyze this image",
base64Image: "...", // Base64 encoded image
systemPrompt: "Be detailed in analysis",
model: "bakllava-1", // Local vision model
instance: "lmstudio"
});
// Example combining cloud and local models
const multiProviderExample = async () => {
// Use OpenAI for main chat
const cloudResponse = await ai.chat({
prompt: "Generate a complex task",
model: "gpt-4o",
format: "text"
});
// Process with local model
const localAnalysis = await ai.chat({
prompt: cloudResponse,
model: "mistral-7b",
format: "text",
instance: "lmstudio"
});
return localAnalysis;
};
Error Handling and Best Practices
try {
const response = await ai.chat({
prompt: "Complex query",
model: "mistral-7b",
format: "text",
instance: "lmstudio"
});
} catch (error) {
if (error.message.includes('Connection refused')) {
// Handle local service not running
console.error('Please ensure LM Studio is running locally');
} else if (error.message.includes('model not found')) {
// Handle model loading issues
console.error('Please load the model in LM Studio first');
} else {
// Handle other errors
console.error('Unexpected error:', error);
}
}
Installation
Install the package via npm or yarn:
npm install ai-services-hub
or
yarn add ai-services-hub
Environment Variables
Some services may require additional configuration via environment variables:
- OLLAMA_URL: The base URL for the Ollama API (used internally by
OIlamaInstance
).
Usage Examples
OpenAI
import { OpenAiInstance } from 'ai-services-hub';
const openAi = new OpenAiInstance('YOUR_OPENAI_API_KEY');
(async () => {
try {
const chatResponse = await openAi.chat(
"What is TypeScript?",
"You are a helpful assistant", // optional system prompt
"gpt-4o-mini" // optional model
);
console.log("OpenAI Chat Response:", chatResponse);
const embedding = await openAi.embedding("Text to embed");
console.log("OpenAI Embedding:", embedding);
const transcript = await openAi.transcript("path/to/audio.mp3");
console.log("OpenAI Transcript:", transcript);
const audioFile = await openAi.tts("Hello world!", "nova", "tts-1");
console.log("Audio file saved at:", audioFile);
const visionResponse = await openAi.vision(
"Describe this image",
"path/to/image.jpg",
"System prompt"
);
console.log("OpenAI Vision Response:", visionResponse);
} catch (error) {
console.error("OpenAI error:", error);
}
})();
DeepSeek
import { DeepSeekInstance } from 'ai-services-hub';
const deepSeek = new DeepSeekInstance('YOUR_DEEPSEEK_API_KEY');
(async () => {
try {
const chatResponse = await deepSeek.chat(
"Explain quantum computing",
"Provide a simple explanation", // optional system prompt
"deepseek-reasoner", // optional model
0.7 // optional temperature
);
console.log("DeepSeek Chat Response:", chatResponse);
} catch (error) {
console.error("DeepSeek error:", error);
}
})();
Gemini
import { GeminiInstance } from 'ai-services-hub';
const gemini = new GeminiInstance('YOUR_GEMINI_API_KEY');
(async () => {
try {
const chatResponse = await gemini.chat(
"What is the speed of light?",
"gemini-2.0-pro-exp-02-05", // optional model
"You are a science expert" // optional system prompt
);
console.log("Gemini Chat Response:", chatResponse);
} catch (error) {
console.error("Gemini error:", error);
}
})();
LM Studio
import { LmStudioInstance } from 'ai-services-hub';
const lmStudio = new LmStudioInstance('YOUR_LMSTUDIO_URL'); // e.g., "localhost:5000"
(async () => {
try {
const chatResponse = await lmStudio.chat(
"Compose a short story",
"You are a creative writer", // optional system prompt
"speakleash/Bielik-11B-v2.3-Instruct-GGUF" // optional model
);
console.log("LM Studio Chat Response:", chatResponse);
const embedding = await lmStudio.embedding(
"Text to embed",
"speakleash/Bielik-11B-v2.3-Instruct-GGUF"
);
console.log("LM Studio Embedding:", embedding);
const visionResponse = await lmStudio.vision(
"Describe the image",
"path/to/image.jpg",
"Image analysis", // system prompt
"speakleash/Bielik-11B-v2.3-Instruct-GGUF"
);
console.log("LM Studio Vision Response:", visionResponse);
const models = await lmStudio.models();
console.log("LM Studio Models:", models);
} catch (error) {
console.error("LM Studio error:", error);
}
})();
Ollama
import { OIlamaInstance } from 'ai-services-hub';
const ollama = new OIlamaInstance('YOUR_OLLAMA_API_KEY');
// Note: The base URL for the Ollama API must be set in the OLLAMA_URL environment variable
(async () => {
try {
const chatResponse = await ollama.chat(
"Describe microservices architecture",
"Provide a detailed explanation", // optional system prompt
"your-model-name"
);
console.log("Ollama Chat Response:", chatResponse);
const generateResponse = await ollama.generate(
"Generate a short poem",
"your-model-name"
);
console.log("Ollama Generate Response:", generateResponse);
const embedding = await ollama.embedding(
"Text to embed",
"all-minilm" // optional model
);
console.log("Ollama Embedding:", embedding);
const modelsList = await ollama.models();
console.log("Ollama Models:", modelsList);
await ollama.pullModel("your-model-name");
await ollama.deleteModel("your-model-name");
} catch (error) {
console.error("Ollama error:", error);
}
})();
Perplexity
import { PerplexityInstance } from 'ai-services-hub';
const perplexity = new PerplexityInstance('YOUR_PERPLEXITY_API_KEY');
(async () => {
try {
// Example usage: invoking a chat method similar to other instances
const chatResponse = await perplexity.chat("What is the future of AI?");
console.log("Perplexity Chat Response:", chatResponse);
} catch (error) {
console.error("Perplexity error:", error);
}
})();
Qdrant
import { QdrantInstance } from 'ai-services-hub';
const qdrant = new QdrantInstance({
url: 'YOUR_QDRANT_URL',
apiKey: 'YOUR_QDRANT_API_KEY'
});
(async () => {
try {
await qdrant.initQdrantClient("collection-name");
await qdrant.saveEmbeddingToQdrant(
"collection-name",
[0.1, 0.2, 0.3], // example embedding vector
{ info: "example payload" }
);
const results = await qdrant.queryQdrant(
[0.1, 0.2, 0.3],
"collection-name"
);
console.log("Qdrant Query Results:", results);
} catch (error) {
console.error("Qdrant error:", error);
}
})();
Error Handling
Each service instance provides proper error handling—errors are logged and thrown so they can be managed via try-catch blocks in your application.
Contributing
Contributions are welcome! Please open an issue or submit a pull request with your suggestions or improvements.
License
This project is licensed under the MIT License.
3 months ago
3 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago