0.0.75 • Published 2 years ago

appylar-package-5ex v0.0.75

Weekly downloads
-
License
MIT
Repository
github
Last release
2 years ago

A set of functions for doing financial arithmetic. This is a library you could use to build a friendlier money-math library, like the financial-number library.

  1. Takes strings only
  2. Does all math with the native BigInt implementation (use 1.x release if you want a version that works in older browsers)
  3. Multiplication results have a precision that is twice the precision of their inputs. 9.55 * 1.50 = 14.3250
  4. Addition and subtraction results have a precision as great as the highest precision of the two inputs. 1.5 + 1.00 = 2.50

Require with const math = require('financial-arithmetic-functions')

validate(str)

Can you pass it in to any of the other functions?

math.validate('123') // => true
math.validate('123.444') // => true
math.validate('123.') // => false
math.validate(123) // => false

add(a, b)

math.add('+123', '9.999') // => '132.999'
math.add('1.1', '1.234') // => '2.334'
math.add('5', '987876765654543432321') // => '987876765654543432326'

subtract(a, b)

math.subtract('123', '100') // => '23'
math.subtract('44', '-11') // => '55'
math.subtract('1.0000', '0.004') // => '0.9960'

multiply(a, b)

math.multiply('123', '0.0001') // => '0.0123'
math.multiply('99.99', '14') // => '1399.86'

getPrecision(str)

math.getPrecision('12.666') // => 3
math.getPrecision('999') // => 0

modulo(dividend, divisor)

math.modulo('10', '2') // => '0'
math.modulo('10.0', '2') // => '0.0'
math.modulo('12.33', '1') // => '0.33'
math.modulo('12.33', '1.00') // => '0.33'
0.0.40

2 years ago

0.0.41

2 years ago

0.0.42

2 years ago

0.0.43

2 years ago

0.0.44

2 years ago

0.0.45

2 years ago

0.0.47

2 years ago

0.0.39

2 years ago

0.0.73

2 years ago

0.0.74

2 years ago

0.0.75

2 years ago

0.0.70

2 years ago

0.0.71

2 years ago

0.0.72

2 years ago

0.0.62

2 years ago

0.0.63

2 years ago

0.0.64

2 years ago

0.0.65

2 years ago

0.0.66

2 years ago

0.0.67

2 years ago

0.0.68

2 years ago

0.0.60

2 years ago

0.0.61

2 years ago

0.0.59

2 years ago

0.0.51

2 years ago

0.0.52

2 years ago

0.0.53

2 years ago

0.0.54

2 years ago

0.0.55

2 years ago

0.0.56

2 years ago

0.0.57

2 years ago

0.0.58

2 years ago

0.0.50

2 years ago

0.0.48

2 years ago

0.0.49

2 years ago

0.0.20

2 years ago

0.0.21

2 years ago

0.0.22

2 years ago

0.0.23

2 years ago

0.0.24

2 years ago

0.0.25

2 years ago

0.0.37

2 years ago

0.0.38

2 years ago

0.0.16

2 years ago

0.0.17

2 years ago

0.0.18

2 years ago

0.0.19

2 years ago

0.0.30

2 years ago

0.0.31

2 years ago

0.0.32

2 years ago

0.0.33

2 years ago

0.0.34

2 years ago

0.0.35

2 years ago

0.0.36

2 years ago

0.0.26

2 years ago

0.0.27

2 years ago

0.0.28

2 years ago

0.0.29

2 years ago

0.0.15

2 years ago

0.0.14

2 years ago

0.0.13

2 years ago

0.0.12

2 years ago

0.0.11

2 years ago

0.0.10

2 years ago

0.0.9

2 years ago

0.0.8

2 years ago

0.0.7

2 years ago

0.0.6

2 years ago

0.0.5

2 years ago

0.0.4

2 years ago

0.0.3

2 years ago

0.0.2

2 years ago

0.0.1

2 years ago