0.0.21 • Published 10 months ago
bloomfilter v0.0.21
Bloom Filter
This JavaScript bloom filter implementation uses the non-cryptographic Fowler–Noll–Vo hash function for speed.
Usage
const bloom = new BloomFilter(
32 * 256, // number of bits to allocate.
16 // number of hash functions.
);
// Add some elements to the filter.
bloom.add("foo");
bloom.add("bar");
// Test if an item is in our filter.
// Returns true if an item is probably in the set,
// or false if an item is definitely not in the set.
bloom.test("foo");
bloom.test("bar");
bloom.test("blah");
// Serialisation. Note that bloom.buckets may be a typed array,
// so we convert to a normal array first.
const array = [].slice.call(bloom.buckets);
const json = JSON.stringify(array);
// Deserialisation. Note that the any array-like object is supported, but
// this will be used directly, so you may wish to use a typed array for
// performance.
const bloom = new BloomFilter(array, 16);
// Automatically pick {m, k} based on number of elements and target false
// positive error rate.
const bloom = BloomFilter.withTargetError(1_000_000, 1e-6);
Implementation
Although the bloom filter requires k hash functions, we can simulate this using enhanced double hashing with a single 64-bit FNV-1a hash computation for performance. The 64-bit hash is split into two 32-bit halves to obtain the two independent hash functions required for enhanced double hashing.
Thanks to Will Fitzgerald for his help and inspiration with the hashing optimisation.
0.0.20
10 months ago
0.0.21
10 months ago
0.0.19
10 months ago
0.0.18
7 years ago
0.0.17
8 years ago
0.0.16
10 years ago
0.0.15
10 years ago
0.0.14
12 years ago
0.0.12
12 years ago
0.0.11
13 years ago
0.0.10
13 years ago
0.0.9
14 years ago
0.0.8
14 years ago
0.0.7
14 years ago
0.0.6
14 years ago
0.0.5
14 years ago
0.0.4
14 years ago