chat-about-video v3.2.1
chat-about-video
Chat about a video clip (or without the video clip) using the powerful OpenAI ChatGPT (hosted in OpenAI or Microsoft Azure) or Google Gemini (hosted in Google Could).
chat-about-video
is an open-source NPM package designed to accelerate the development of conversation applications about video content. Harnessing the capabilities of ChatGPT from Microsoft Azure or OpenAI, as well as Gemini from Google, this package opens up a range of usage scenarios with minimal effort.
Key features:
- ChatGPT models hosted in both Azure and OpenAI are supported.
- Gemini models hosted in Google Cloud are supported.
- Frame images are extracted from the input video, and uploaded for ChatGPT/Gemini to consume.
- It can automatically retry on receiving throttling (HTTP status code 429) and error (HTTP status code 5xx) responses from the API.
- Options supported by the underlying API are exposed for customisation.
- It can also be used in scenario that no video needs to be involved, that means it can be used for "normal" text chats.
Usage
Installation
To use chat-about-video
in your Node.js application,
add it as a dependency along with other necessary packages based on your usage scenario.
Below are examples for typical setups:
# ChatGPT on OpenAI or Azure with Azure Blob Storage
npm i chat-about-video @azure/openai @ffmpeg-installer/ffmpeg @azure/storage-blob
# Gemini in Google Cloud
npm i chat-about-video @google/generative-ai @ffmpeg-installer/ffmpeg
# ChatGPT on OpenAI or Azure with AWS S3
npm i chat-about-video @azure/openai @ffmpeg-installer/ffmpeg @handy-common-utils/aws-utils @aws-sdk/s3-request-presigner @aws-sdk/client-s3
Optional dependencies
ChatGPT
To use ChatGPT hosted on OpenAI or Azure:
npm i @azure/openai
Gemini
To use Gemini hosted on Google Cloud:
npm i @google/generative-ai
ffmpeg
If you need ffmpeg for extracting video frame images, ensure it is installed. You can use a system package manager or an NPM package:
sudo apt install ffmpeg
# or
npm i @ffmpeg-installer/ffmpeg
Azure Blob Storage
To use Azure Blob Storage for frame images (not needed for Gemini):
npm i @azure/storage-blob
AWS S3
To use AWS S3 for frame images (not needed for Gemini):
npm i @handy-common-utils/aws-utils @aws-sdk/s3-request-presigner @aws-sdk/client-s3
How the video is provided to ChatGPT or Gemini
ChatGPT
There are two approaches for feeding video content to ChatGPT. chat-about-video
supports both of them.
Frame image extraction:
- Integrate ChatGPT from Microsoft Azure or OpenAI effortlessly.
- Utilize ffmpeg integration provided by this package for frame image extraction or opt for a DIY approach.
- Store frame images with ease, supporting Azure Blob Storage and AWS S3.
- GPT-4o and GPT-4 Vision Preview hosted in Azure allows analysis of up to 10 frame images.
- GPT-4o and GPT-4 Vision Preview hosted in OpenAI allows analysis of more than 10 frame images.
Video indexing with Microsoft Azure:
- Exclusively supported by GPT-4 Vision Preview from Microsoft Azure.
- Ingest videos seamlessly into Microsoft Azure's Video Retrieval Index.
- Automatic extraction of up to 20 frame images using Video Retrieval Indexer.
- Default integration of speech transcription for enhanced comprehension.
- Flexible storage options with support for Azure Blob Storage and AWS S3.
Gemini
chat-about-video
supports sending Video frames directly to Google's API without a cloud storage.
- Utilize ffmpeg integration provided by this package for frame image extraction or opt for a DIY approach.
- Number of frame images is only limited by Gemini API in Google Cloud.
Concrete types and low level clients
ChatAboutVideo
and Conversation
are generic classes.
Use them without concrete generic type parameters when you want the flexibility to easily switch between ChatGPT and Gemini.
Otherwise, you may want to use concrete type. Below are some examples:
// cast to a concrete type
const castToChatGpt = chat as ChatAboutVideoWithChatGpt;
// you can also just leave the ChatAboutVideo instance generic, but narrow down the conversation type
const conversationWithGemini = (await chat.startConversation(...)) as ConversationWithGemini;
const conversationWithChatGpt = await (chat as ChatAboutVideoWithChatGpt).startConversation(...);
To access the underlying API wrapper, use the getApi()
function on the ChatAboutVideo
instance.
To get the raw API client, use the getClient()
function on the awaited object returned from getApi()
.
Cleaning up
Intermediate files, such as extracted frame images, can be saved locally or in the cloud.
To remove these files when they are no longer needed, remember to call the end()
function
on the Conversation
instance when the conversion finishes.
Customisation
Frame extraction
If you would like to customise how frame images are extracted and stored, consider these:
- In the options object passed to the constructor of
ChatAboutVideo
, there's a propertyextractVideoFrames
. This property allows you to customise how frame images are extracted.format
,interval
,limit
,width
,height
- These allows you to specify your expectation on the extraction.deleteFilesWhenConversationEnds
- This flag allows you to specify whether you want extracted frame images to be deleted from the local file system when the conversation ends, or not.framesDirectoryResolver
- You can supply a function for determining where extracted frame image files should be stored locally.extractor
- You can supply a function for doing the extraction.
- In the options object passed to the constructor of
ChatAboutVideo
, there's a propertystorage
. For ChatGPT, storing frame images in the cloud is recommended. You can use this property to customise how frame images are stored in the cloud.azureStorageConnectionString
- If you would like to use Azure Blob Storage, you need to put the connection string in this property. If this property does not have a value,ChatAboutVideo
would assume that you'd like to use AWS S3, and default AWS identity/credential will be picked up from the OS.storageContainerName
,storagePathPrefix
- They allows you to specify where those images should be stored.downloadUrlExpirationSeconds
- For images stored in the cloud, presigned download URLs with expiration are generated for ChatGPT to access. This property allows you to control the expiration time.deleteFilesWhenConversationEnds
- This flag allows you to specify whether you want extracted frame images to be deleted from the cloud when the conversation ends, or not.uploader
- You can supply a function for uploading images into the cloud.
Settings of the underlying model
In the options object passed to the constructor of ChatAboutVideo
, there's a property clientSettings
,
and there's another property completionSettings
. Settings of the underlying model can be configured
through those two properties.
You can also override settings using the last parameter of startConversation(...)
function on ChatAboutVideo
,
or the last parameter of say(...)
function on Conversation
.
Code examples
Example 1: Using GPT-4o or GPT-4 Vision Preview hosted in OpenAI with Azure Blob Storage
// This is a demo utilising GPT-4o or Vision preview hosted in OpenAI.
// OpenAI API allows more than 10 (maximum allowed by Azure's OpenAI API) images to be supplied.
// Video frame images are uploaded to Azure Blob Storage and then made available to GPT from there.
//
// This script can be executed with a command line like this from the project root directory:
// export OPENAI_API_KEY=...
// export AZURE_STORAGE_CONNECTION_STRING=...
// export OPENAI_MODEL_NAME=...
// export AZURE_STORAGE_CONTAINER_NAME=...
// ENABLE_DEBUG=true DEMO_VIDEO=~/Downloads/test1.mp4 npx ts-node test/demo1.ts
//
import { consoleWithColour } from '@handy-common-utils/misc-utils';
import chalk from 'chalk';
import readline from 'node:readline';
import { ChatAboutVideo, ConversationWithChatGpt } from 'chat-about-video';
async function demo() {
const chat = new ChatAboutVideo(
{
credential: {
key: process.env.OPENAI_API_KEY!,
},
storage: {
azureStorageConnectionString: process.env.AZURE_STORAGE_CONNECTION_STRING!,
storageContainerName: process.env.AZURE_STORAGE_CONTAINER_NAME || 'vision-experiment-input',
storagePathPrefix: 'video-frames/',
},
completionOptions: {
deploymentName: process.env.OPENAI_MODEL_NAME || 'gpt-4o', // 'gpt-4-vision-preview', // or gpt-4o
},
extractVideoFrames: {
limit: 100,
interval: 2,
},
},
consoleWithColour({ debug: process.env.ENABLE_DEBUG === 'true' }, chalk),
);
const conversation = (await chat.startConversation(process.env.DEMO_VIDEO!)) as ConversationWithChatGpt;
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const prompt = (question: string) => new Promise<string>((resolve) => rl.question(question, resolve));
while (true) {
const question = await prompt(chalk.red('\nUser: '));
if (!question) {
continue;
}
if (['exit', 'quit', 'q', 'end'].includes(question)) {
await conversation.end();
break;
}
const answer = await conversation.say(question, { maxTokens: 2000 });
console.log(chalk.blue('\nAI:' + answer));
}
console.log('Demo finished');
rl.close();
}
demo().catch((error) => console.log(chalk.red(JSON.stringify(error, null, 2))));
Example 2: Using GPT-4 Vision Preview hosted in Azure with Azure Video Retrieval Indexer
// This is a demo utilising GPT-4 Vision preview hosted in Azure.
// Azure Video Retrieval Indexer is used for extracting information from the input video.
// Information in Azure Video Retrieval Indexer is supplied to GPT.
//
// This script can be executed with a command line like this from the project root directory:
// export AZURE_OPENAI_API_ENDPOINT=..
// export AZURE_OPENAI_API_KEY=...
// export AZURE_OPENAI_DEPLOYMENT_NAME=...
// export AZURE_STORAGE_CONNECTION_STRING=...
// export AZURE_STORAGE_CONTAINER_NAME=...
// export AZURE_CV_API_KEY=...
// ENABLE_DEBUG=true DEMO_VIDEO=~/Downloads/test1.mp4 npx ts-node test/demo2.ts
//
import { consoleWithColour } from '@handy-common-utils/misc-utils';
import chalk from 'chalk';
import readline from 'node:readline';
import { ChatAboutVideo, ConversationWithChatGpt } from 'chat-about-video';
async function demo() {
const chat = new ChatAboutVideo(
{
endpoint: process.env.AZURE_OPENAI_API_ENDPOINT!,
credential: {
key: process.env.AZURE_OPENAI_API_KEY!,
},
storage: {
azureStorageConnectionString: process.env.AZURE_STORAGE_CONNECTION_STRING!,
storageContainerName: process.env.AZURE_STORAGE_CONTAINER_NAME || 'vision-experiment-input',
storagePathPrefix: 'video-frames/',
},
completionOptions: {
deploymentName: process.env.AZURE_OPENAI_DEPLOYMENT_NAME || 'gpt4vision',
},
videoRetrievalIndex: {
endpoint: process.env.AZURE_CV_API_ENDPOINT!,
apiKey: process.env.AZURE_CV_API_KEY!,
createIndexIfNotExists: true,
deleteIndexWhenConversationEnds: true,
},
},
consoleWithColour({ debug: process.env.ENABLE_DEBUG === 'true' }, chalk),
);
const conversation = (await chat.startConversation(process.env.DEMO_VIDEO!)) as ConversationWithChatGpt;
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const prompt = (question: string) => new Promise<string>((resolve) => rl.question(question, resolve));
while (true) {
const question = await prompt(chalk.red('\nUser: '));
if (!question) {
continue;
}
if (['exit', 'quit', 'q', 'end'].includes(question)) {
await conversation.end();
break;
}
const answer = await conversation.say(question, { maxTokens: 2000 });
console.log(chalk.blue('\nAI:' + answer));
}
console.log('Demo finished');
rl.close();
}
demo().catch((error) => console.log(chalk.red(JSON.stringify(error, null, 2)), (error as Error).stack));
Example 3: Using GPT-4 Vision Preview hosted in Azure with Azure Blob Storage
// This is a demo utilising GPT-4o or Vision preview hosted in Azure.
// Up to 10 (maximum allowed by Azure's OpenAI API) frames are extracted from the input video.
// Video frame images are uploaded to Azure Blob Storage and then made available to GPT from there.
//
// This script can be executed with a command line like this from the project root directory:
// export AZURE_OPENAI_API_ENDPOINT=..
// export AZURE_OPENAI_API_KEY=...
// export AZURE_OPENAI_DEPLOYMENT_NAME=...
// export AZURE_STORAGE_CONNECTION_STRING=...
// export AZURE_STORAGE_CONTAINER_NAME=...
// ENABLE_DEBUG=true DEMO_VIDEO=~/Downloads/test1.mp4 npx ts-node test/demo3.ts
import { consoleWithColour } from '@handy-common-utils/misc-utils';
import chalk from 'chalk';
import readline from 'node:readline';
import { ChatAboutVideo, ConversationWithChatGpt } from 'chat-about-video';
async function demo() {
const chat = new ChatAboutVideo(
{
endpoint: process.env.AZURE_OPENAI_API_ENDPOINT!,
credential: {
key: process.env.AZURE_OPENAI_API_KEY!,
},
storage: {
azureStorageConnectionString: process.env.AZURE_STORAGE_CONNECTION_STRING!,
storageContainerName: process.env.AZURE_STORAGE_CONTAINER_NAME || 'vision-experiment-input',
storagePathPrefix: 'video-frames/',
},
completionOptions: {
deploymentName: process.env.AZURE_OPENAI_DEPLOYMENT_NAME || 'gpt4vision',
},
},
consoleWithColour({ debug: process.env.ENABLE_DEBUG === 'true' }, chalk),
);
const conversation = (await chat.startConversation(process.env.DEMO_VIDEO!)) as ConversationWithChatGpt;
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const prompt = (question: string) => new Promise<string>((resolve) => rl.question(question, resolve));
while (true) {
const question = await prompt(chalk.red('\nUser: '));
if (!question) {
continue;
}
if (['exit', 'quit', 'q', 'end'].includes(question)) {
await conversation.end();
break;
}
const answer = await conversation.say(question, { maxTokens: 2000 });
console.log(chalk.blue('\nAI:' + answer));
}
console.log('Demo finished');
rl.close();
}
demo().catch((error) => console.log(chalk.red(JSON.stringify(error, null, 2))));
Example 4: Using Gemini hosted in Google Cloud
// This is a demo utilising Google Gemini through Google Generative Language API.
// Google Gemini allows more than 10 (maximum allowed by Azure's OpenAI API) frame images to be supplied.
// Video frame images are sent through Google Generative Language API directly.
//
// This script can be executed with a command line like this from the project root directory:
// export GEMINI_API_KEY=...
// ENABLE_DEBUG=true DEMO_VIDEO=~/Downloads/test1.mp4 npx ts-node test/demo4.ts
import { consoleWithColour } from '@handy-common-utils/misc-utils';
import chalk from 'chalk';
import readline from 'node:readline';
import { HarmBlockThreshold, HarmCategory } from '@google/generative-ai';
import { ChatAboutVideo, ConversationWithGemini } from 'chat-about-video';
async function demo() {
const chat = new ChatAboutVideo(
{
credential: {
key: process.env.GEMINI_API_KEY!,
},
clientSettings: {
modelParams: {
model: 'gemini-1.5-flash',
},
},
extractVideoFrames: {
limit: 100,
interval: 0.5,
},
},
consoleWithColour({ debug: process.env.ENABLE_DEBUG === 'true' }, chalk),
);
const conversation = (await chat.startConversation(process.env.DEMO_VIDEO!)) as ConversationWithGemini;
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const prompt = (question: string) => new Promise<string>((resolve) => rl.question(question, resolve));
while (true) {
const question = await prompt(chalk.red('\nUser: '));
if (!question) {
continue;
}
if (['exit', 'quit', 'q', 'end'].includes(question)) {
await conversation.end();
break;
}
const answer = await conversation.say(question, {
safetySettings: [{ category: HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold: HarmBlockThreshold.BLOCK_NONE }],
});
console.log(chalk.blue('\nAI:' + answer));
}
console.log('Demo finished');
rl.close();
}
demo().catch((error) => console.log(chalk.red(JSON.stringify(error, null, 2))));
API
chat-about-video
Modules
- aws
- azure
- azure/client-hack
- azure/video-retrieval-api-client
- chat
- chat-gpt
- gemini
- index
- storage
- storage/types
- types
- utils
- video
- video/ffmpeg
- video/types
Classes
Class: VideoRetrievalApiClient
azure/video-retrieval-api-client.VideoRetrievalApiClient
Constructors
constructor
• new VideoRetrievalApiClient(endpointBaseUrl
, apiKey
, apiVersion?
)
Parameters
Name | Type | Default value |
---|---|---|
endpointBaseUrl | string | undefined |
apiKey | string | undefined |
apiVersion | string | '2023-05-01-preview' |
Methods
createIndex
▸ createIndex(indexName
, indexOptions?
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
indexOptions | CreateIndexOptions |
Returns
Promise
\<void
>
createIndexIfNotExist
▸ createIndexIfNotExist(indexName
, indexOptions?
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
indexOptions? | CreateIndexOptions |
Returns
Promise
\<void
>
createIngestion
▸ createIngestion(indexName
, ingestionName
, ingestion
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
ingestionName | string |
ingestion | IngestionRequest |
Returns
Promise
\<void
>
deleteDocument
▸ deleteDocument(indexName
, documentUrl
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
documentUrl | string |
Returns
Promise
\<void
>
deleteIndex
▸ deleteIndex(indexName
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
Returns
Promise
\<void
>
getIndex
▸ getIndex(indexName
): Promise
\<undefined
| IndexSummary
>
Parameters
Name | Type |
---|---|
indexName | string |
Returns
Promise
\<undefined
| IndexSummary
>
getIngestion
▸ getIngestion(indexName
, ingestionName
): Promise
\<IngestionSummary
>
Parameters
Name | Type |
---|---|
indexName | string |
ingestionName | string |
Returns
Promise
\<IngestionSummary
>
ingest
▸ ingest(indexName
, ingestionName
, ingestion
, backoff?
): Promise
\<void
>
Parameters
Name | Type |
---|---|
indexName | string |
ingestionName | string |
ingestion | IngestionRequest |
backoff | number [] |
Returns
Promise
\<void
>
listDocuments
▸ listDocuments(indexName
): Promise
\<DocumentSummary
[]>
Parameters
Name | Type |
---|---|
indexName | string |
Returns
Promise
\<DocumentSummary
[]>
listIndexes
▸ listIndexes(): Promise
\<IndexSummary
[]>
Returns
Promise
\<IndexSummary
[]>
Class: ChatAboutVideo\<CLIENT, OPTIONS, PROMPT, RESPONSE>
chat.ChatAboutVideo
Type parameters
Name | Type |
---|---|
CLIENT | any |
OPTIONS | extends AdditionalCompletionOptions = any |
PROMPT | any |
RESPONSE | any |
Constructors
constructor
• new ChatAboutVideo\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>(options
, log?
)
Type parameters
Name | Type |
---|---|
CLIENT | any |
OPTIONS | extends AdditionalCompletionOptions = any |
PROMPT | any |
RESPONSE | any |
Parameters
Name | Type |
---|---|
options | SupportedChatApiOptions |
log | undefined | LineLogger \<(message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void > |
Properties
Property | Description |
---|---|
Protected apiPromise: Promise \<ChatApi \<CLIENT , OPTIONS , PROMPT , RESPONSE >> | |
Protected log: undefined | LineLogger \<(message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void > | |
Protected options: SupportedChatApiOptions |
Methods
getApi
▸ getApi(): Promise
\<ChatApi
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
Get the underlying API instance.
Returns
Promise
\<ChatApi
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
The underlying API instance.
startConversation
▸ startConversation(options?
): Promise
\<Conversation
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
Start a conversation without a video
Parameters
Name | Type | Description |
---|---|---|
options? | OPTIONS | Overriding options for this conversation |
Returns
Promise
\<Conversation
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
The conversation.
▸ startConversation(videoFile
, options?
): Promise
\<Conversation
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
Start a conversation about a video.
Parameters
Name | Type | Description |
---|---|---|
videoFile | string | Path to a video file in local file system. |
options? | OPTIONS | Overriding options for this conversation |
Returns
Promise
\<Conversation
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>>
The conversation.
Class: Conversation\<CLIENT, OPTIONS, PROMPT, RESPONSE>
chat.Conversation
Type parameters
Name | Type |
---|---|
CLIENT | any |
OPTIONS | extends AdditionalCompletionOptions = any |
PROMPT | any |
RESPONSE | any |
Constructors
constructor
• new Conversation\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>(conversationId
, api
, prompt
, options
, cleanup?
, log?
)
Type parameters
Name | Type |
---|---|
CLIENT | any |
OPTIONS | extends AdditionalCompletionOptions = any |
PROMPT | any |
RESPONSE | any |
Parameters
Name | Type |
---|---|
conversationId | string |
api | ChatApi \<CLIENT , OPTIONS , PROMPT , RESPONSE > |
prompt | undefined | PROMPT |
options | OPTIONS |
cleanup? | () => Promise \<any > |
log | undefined | LineLogger \<(message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void > |
Properties
Property | Description |
---|---|
Protected api: ChatApi \<CLIENT , OPTIONS , PROMPT , RESPONSE > | |
Protected Optional cleanup: () => Promise \<any > | |
Protected conversationId: string | |
Protected log: undefined | LineLogger \<(message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void , (message? : any , ...optionalParams : any []) => void > | |
Protected options: OPTIONS | |
Protected prompt: undefined | PROMPT |
Methods
end
▸ end(): Promise
\<void
>
Returns
Promise
\<void
>
getApi
▸ getApi(): ChatApi
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>
Get the underlying API instance.
Returns
ChatApi
\<CLIENT
, OPTIONS
, PROMPT
, RESPONSE
>
The underlying API instance.
getPrompt
▸ getPrompt(): undefined
| PROMPT
Get the prompt for the current conversation. The prompt is the accumulated messages in the conversation so far.
Returns
undefined
| PROMPT
The prompt which is the accumulated messages in the conversation so far.
say
▸ say(message
, options?
): Promise
\<undefined
| string
>
Say something in the conversation, and get the response from AI
Parameters
Name | Type | Description |
---|---|---|
message | string | The message to say in the conversation. |
options? | Partial \<OPTIONS > | Options for fine control. |
Returns
Promise
\<undefined
| string
>
The response/completion
Class: ChatGptApi
chat-gpt.ChatGptApi
Implements
Constructors
constructor
• new ChatGptApi(options
)
Parameters
Name | Type |
---|---|
options | ChatGptOptions |
Properties
Property | Description |
---|---|
Protected client: OpenAIClient | |
Protected Optional extractVideoFrames: Pick \<ExtractVideoFramesOptions , "height" > & Required \<Omit \<ExtractVideoFramesOptions , "height" >> | |
Protected options: ChatGptOptions | |
Protected storage: Required \<Pick \<StorageOptions , "uploader" >> & StorageOptions | |
Protected tmpDir: string | |
Protected Optional videoRetrievalIndex: Required \<Pick \<VideoRetrievalIndexOptions , "createIndexIfNotExists" | "deleteDocumentWhenConversationEnds" | "deleteIndexWhenConversationEnds" >> & VideoRetrievalIndexOptions |
Methods
appendToPrompt
▸ appendToPrompt(newPromptOrResponse
, prompt?
): Promise
\<ChatRequestMessageUnion
[]>
Append a new prompt or response to the form a full prompt. This function is useful to build a prompt that contains conversation history.
Parameters
Name | Type | Description |
---|---|---|
newPromptOrResponse | ChatCompletions | ChatRequestMessageUnion [] | A new prompt to be appended, or previous response to be appended. |
prompt? | ChatRequestMessageUnion [] | The conversation history which is a prompt containing previous prompts and responses. If it is not provided, the conversation history returned will contain only what is in newPromptOrResponse. |
Returns
Promise
\<ChatRequestMessageUnion
[]>
The full prompt which is effectively the conversation history.
Implementation of
buildTextPrompt
▸ buildTextPrompt(text
, _conversationId?
): Promise
\<{ prompt
: ChatRequestMessageUnion
[] }>
Build prompt for sending text content to AI
Parameters
Name | Type | Description |
---|---|---|
text | string | The text content to be sent. |
_conversationId? | string | Unique identifier of the conversation. |
Returns
Promise
\<{ prompt
: ChatRequestMessageUnion
[] }>
An object containing the prompt.
Implementation of
buildVideoPrompt
▸ buildVideoPrompt(videoFile
, conversationId?
): Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
Build prompt for sending video content to AI. Sometimes, to include video in the conversation, additional options and/or clean up is needed. In such case, options to be passed to generateContent function and/or a clean up call back function will be returned in the output of this function.
Parameters
Name | Type | Description |
---|---|---|
videoFile | string | Path to the video file. |
conversationId? | string | Unique identifier of the conversation. |
Returns
Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
An object containing the prompt, optional options, and an optional cleanup function.
Implementation of
buildVideoPromptWithFrames
▸ Protected
buildVideoPromptWithFrames(videoFile
, conversationId?
): Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
Parameters
Name | Type |
---|---|
videoFile | string |
conversationId | string |
Returns
Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
buildVideoPromptWithVideoRetrievalIndex
▸ Protected
buildVideoPromptWithVideoRetrievalIndex(videoFile
, conversationId?
): Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
Parameters
Name | Type |
---|---|
videoFile | string |
conversationId | string |
Returns
Promise
\<BuildPromptOutput
\<ChatRequestMessageUnion
[], { deploymentName
: string
} & AdditionalCompletionOptions
& GetChatCompletionsOptions
>>
generateContent
▸ generateContent(prompt
, options
): Promise
\<ChatCompletions
>
Generate content based on the given prompt and options.
Parameters
Name | Type | Description |
---|---|---|
prompt | ChatRequestMessageUnion [] | The full prompt to generate content. |
options | { deploymentName : string } & AdditionalCompletionOptions & GetChatCompletionsOptions | Optional options to control the content generation. |
Returns
Promise
\<ChatCompletions
>
The generated content.
Implementation of
getClient
▸ getClient(): Promise
\<OpenAIClient
>
Get the raw client. This function could be useful for advanced use cases.
Returns
Promise
\<OpenAIClient
>
The raw client.
Implementation of
getResponseText
▸ getResponseText(result
): Promise
\<undefined
| string
>
Get the text from the response object
Parameters
Name | Type | Description |
---|---|---|
result | ChatCompletions | the response object |
Returns
Promise
\<undefined
| string
>
Implementation of
isServerError
▸ isServerError(error
): boolean
Check if the error is a server error.
Parameters
Name | Type | Description |
---|---|---|
error | any | any error object |
Returns
boolean
true if the error is a server error, false otherwise.
Implementation of
isThrottlingError
▸ isThrottlingError(error
): boolean
Check if the error is a throttling error.
Parameters
Name | Type | Description |
---|---|---|
error | any | any error object |
Returns
boolean
true if the error is a throttling error, false otherwise.
Implementation of
Class: GeminiApi
gemini.GeminiApi
Implements
ChatApi
\<GeminiClient
,GeminiCompletionOptions
,any
[],GeminiResponse
>
Constructors
constructor
• new GeminiApi(options
)
Parameters
Name | Type |
---|---|
options | GeminiOptions |
Properties
Property | Description |
---|---|
Protected client: GenerativeModel | |
Protected extractVideoFrames: Pick \<ExtractVideoFramesOptions , "height" > & Required \<Omit \<ExtractVideoFramesOptions , "height" >> | |
Protected options: GeminiOptions | |
Protected tmpDir: string |
Methods
appendToPrompt
▸ appendToPrompt(newPromptOrResponse
, prompt?
): Promise
\<Content
[]>
Append a new prompt or response to the form a full prompt. This function is useful to build a prompt that contains conversation history.
Parameters
Name | Type | Description |
---|---|---|
newPromptOrResponse | Content [] | GenerateContentResult | A new prompt to be appended, or previous response to be appended. |
prompt? | Content [] | The conversation history which is a prompt containing previous prompts and responses. If it is not provided, the conversation history returned will contain only what is in newPromptOrResponse. |
Returns
Promise
\<Content
[]>
The full prompt which is effectively the conversation history.
Implementation of
buildTextPrompt
▸ buildTextPrompt(text
, _conversationId?
): Promise
\<{ prompt
: Content
[] }>
Build prompt for sending text content to AI
Parameters
Name | Type | Description |
---|---|---|
text | string | The text content to be sent. |
_conversationId? | string | Unique identifier of the conversation. |
Returns
Promise
\<{ prompt
: Content
[] }>
An object containing the prompt.
Implementation of
buildVideoPrompt
▸ buildVideoPrompt(videoFile
, conversationId?
): Promise
\<BuildPromptOutput
\<Content
[], GeminiCompletionOptions
>>
Build prompt for sending video content to AI. Sometimes, to include video in the conversation, additional options and/or clean up is needed. In such case, options to be passed to generateContent function and/or a clean up call back function will be returned in the output of this function.
Parameters
Name | Type | Description |
---|---|---|
videoFile | string | Path to the video file. |
conversationId | string | Unique identifier of the conversation. |
Returns
Promise
\<BuildPromptOutput
\<Content
[], GeminiCompletionOptions
>>
An object containing the prompt, optional options, and an optional cleanup function.
Implementation of
generateContent
▸ generateContent(prompt
, options
): Promise
\<GenerateContentResult
>
Generate content based on the given prompt and options.
Parameters
Name | Type | Description |
---|---|---|
prompt | Content [] | The full prompt to generate content. |
options | GeminiCompletionOptions | Optional options to control the content generation. |
Returns
Promise
\<GenerateContentResult
>
The generated content.
Implementation of
getClient
▸ getClient(): Promise
\<GenerativeModel
>
Get the raw client. This function could be useful for advanced use cases.
Returns
Promise
\<GenerativeModel
>
The raw client.
Implementation of
getResponseText
▸ getResponseText(result
): Promise
\<undefined
| string
>
Get the text from the response object
Parameters
Name | Type | Description |
---|---|---|
result | GenerateContentResult | the response object |
Returns
Promise
\<undefined
| string
>
Implementation of
isServerError
▸ isServerError(error
): boolean
Check if the error is a server error.
Parameters
Name | Type | Description |
---|---|---|
error | any | any error object |
Returns
boolean
true if the error is a server error, false otherwise.
Implementation of
isThrottlingError
▸ isThrottlingError(error
): boolean
Check if the error is a throttling error.
Parameters
Name | Type | Description |
---|---|---|
error | any | any error object |
Returns
boolean
true if the error is a throttling error, false otherwise.
Implementation of
Interfaces
Interface: CreateIndexOptions
azure/video-retrieval-api-client.CreateIndexOptions
Properties
Property | Description |
---|---|
Optional features: IndexFeature [] | |
Optional metadataSchema: IndexMetadataSchema | |
Optional userData: object |
Interface: DocumentSummary
azure/video-retrieval-api-client.DocumentSummary
Properties
Property | Description |
---|---|
createdDateTime: string | |
documentId: string | |
Optional documentUrl: string | |
lastModifiedDateTime: string | |
Optional metadata: object | |
Optional userData: object |
Interface: IndexFeature
azure/video-retrieval-api-client.IndexFeature
Properties
Property | Description |
---|---|
Optional domain: "surveillance" | "generic" | |
Optional modelVersion: string | |
name: "vision" | "speech" |
Interface: IndexMetadataSchema
azure/video-retrieval-api-client.IndexMetadataSchema
Properties
Property | Description |
---|---|
fields: IndexMetadataSchemaField [] | |
Optional language: string |
Interface: IndexMetadataSchemaField
azure/video-retrieval-api-client.IndexMetadataSchemaField
Properties
Property | Description |
---|---|
filterable: boolean | |
name: string | |
searchable: boolean | |
type: "string" | "datetime" |
Interface: IndexSummary
azure/video-retrieval-api-client.IndexSummary
Properties
Property | Description |
---|---|
createdDateTime: string | |
eTag: string | |
Optional features: IndexFeature [] | |
lastModifiedDateTime: string | |
name: string | |
Optional userData: object |
Interface: IngestionRequest
azure/video-retrieval-api-client.IngestionRequest
Properties
Property | Description |
---|---|
Optional filterDefectedFrames: boolean | |
Optional generateInsightIntervals: boolean | |
Optional includeSpeechTranscript: boolean | |
Optional moderation: boolean | |
videos: VideoIngestion [] |
Interface: IngestionStatusDetail
azure/video-retrieval-api-client.IngestionStatusDetail
Properties
Property | Description |
---|---|
documentId: string | |
documentUrl: string | |
lastUpdatedTime: string | |
succeeded: boolean |
Interface: IngestionSummary
azure/video-retrieval-api-client.IngestionSummary
Properties
Property | Description |
---|---|
Optional batchName: string | |
createdDateTime: string | |
Optional fileStatusDetails: IngestionStatusDetail [] | |
lastModifiedDateTime: string | |
name: string | |
state: "NotStarted" | "Running" | "Completed" | "Failed" | "PartiallySucceeded" |
Interface: VideoIngestion
azure/video-retrieval-api-client.VideoIngestion
Properties
Property | Description |
---|---|
Optional documentId: string | |
documentUrl: string | |
Optional metadata: object | |
mode: "update" | "remove" | "add" | |
Optional userData: object |
Interface: AdditionalCompletionOptions
types.AdditionalCompletionOptions
Properties
Property | Description |
---|
8 months ago
11 months ago
11 months ago
11 months ago
11 months ago
12 months ago
1 year ago
11 months ago
11 months ago
11 months ago
11 months ago
11 months ago
11 months ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago