1.0.8 • Published 5 years ago
crazy-primes v1.0.8
Crazy Primes (Useful Prime Numbers Functions)
Primes are of the utmost importance to number theorists because they are the building blocks of whole numbers, and important to the world because their odd mathematical properties make them perfect for our current uses. On that matter we've built a library to create and find prime numbers
Features
- Basic prime number generators
- Primes' indexes
- High performance
- Some special prime arrays
- Relations with normal integers
Installation
Usage
const pr = require('crazy-primes');
Functions
isPrime(number)
let result = pr.isPrime(13); // true
let result = pr.isPrime(28); // false
nthPrime(order)
let result = pr.nthPrime(5); // 11
indexOfPrime(primeNumber)
let result = pr.indexOfPrime(13); // 5
Index starts from 0
nthPrimesSum(...arguments)
let result = pr.nthPrimesSum(3,5,7); // 5 + 11 + 17 = 33
nthPrimesTimes(...arguments)
let result = pr.nthPrimesTimes(3,5,7); // 5 * 11 * 17 = 935
nextPrime(currentPrime)
let result = pr.nextPrime(17); // 19
prevPrime(currentPrime)
let result = pr.prevPrime(17); // 13
primeSmallerThan(number)
let result = pr.primeSmallerThan(100); // 97
primeBiggerThan(number)
let result = pr.primeBiggerThan(100); // 101
primeDivisors(nonPrimeNumber)
let result = pr.primeDivisors(42); // [2,3,7]
primeDivisorsSum(nonPrimeNumber)
let result = pr.primeDivisorsSum(42); // 2 + 3 + 7 = 12
primeDivisorsTimes(nonPrimeNumber)
let result = pr.primeDivisorsTimes(42); // 2 * 3 * 7 = 42
isMersennePrime(primeNumber)
let result = pr.isMersennePrime(127); // true
nthMersennePrime(order)
let result = pr.nthMersennePrime(5); // 8191
nthMersennePrimeExponents(order)
let result = pr.nthMersennePrimeExponents(5); // 13 - That means 2^13
isPrimeOrDivisors(number)
If the number is prime it returns true, otherwise it returns prime divisors
primesSmallerThan(number)
let result = pr.primesSmallerThan(25); // [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ]
closestPrime(number)
let result = pr.closestPrime(25); // 23
randomPrime(minVal, maxVal)
let result = pr.randomPrime(25, 48); // 31
whatWillThisPrimeBe(primeNumber)
let result = pr.whatWillThisPrimeBe(23); // It'll strengthen you
nextNPrimes(minVal, n)
let result = pr.nextNPrimes(25, 5); // [ 29, 31, 37, 41, 43 ]
prevNPrimes(number)
let result = pr.prevNPrimes(25, 5); // [ 23, 19, 17, 13, 11 ]
primesBetween(number1, number2)
let result = pr.primesBetween(80, 150); // [ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 ]
firstNPrimes(count)
let result = pr.firstNPrimes(7); // [ 2, 3, 5, 7, 11, 13, 17 ]
digits(number)
helper function
let result = pr.digits(1554); // 4
sum(numbersArray)
helper function
let result = pr.sum([2,3,4]); // 9
times(numbersArray)
helper function
let result = pr.times([2,3,4]); // 24
remainDividedBy(number, divisor)
helper function
let result = pr.remainDividedBy(8,3); // 2
printExecutionTime()
helper function That should be bottom of the script
pr.printExecutionTime(); // Execution time: 119ms