1.0.8 • Published 6 years ago
crazy-primes v1.0.8
Crazy Primes (Useful Prime Numbers Functions)

Primes are of the utmost importance to number theorists because they are the building blocks of whole numbers, and important to the world because their odd mathematical properties make them perfect for our current uses. On that matter we've built a library to create and find prime numbers
Features
- Basic prime number generators
- Primes' indexes
- High performance
- Some special prime arrays
- Relations with normal integers
Installation
Usage
const pr = require('crazy-primes');Functions
isPrime(number)
let result = pr.isPrime(13); // truelet result = pr.isPrime(28); // falsenthPrime(order)
let result = pr.nthPrime(5); // 11indexOfPrime(primeNumber)
let result = pr.indexOfPrime(13); // 5Index starts from 0
nthPrimesSum(...arguments)
let result = pr.nthPrimesSum(3,5,7); // 5 + 11 + 17 = 33nthPrimesTimes(...arguments)
let result = pr.nthPrimesTimes(3,5,7); // 5 * 11 * 17 = 935nextPrime(currentPrime)
let result = pr.nextPrime(17); // 19prevPrime(currentPrime)
let result = pr.prevPrime(17); // 13primeSmallerThan(number)
let result = pr.primeSmallerThan(100); // 97primeBiggerThan(number)
let result = pr.primeBiggerThan(100); // 101primeDivisors(nonPrimeNumber)
let result = pr.primeDivisors(42); // [2,3,7]primeDivisorsSum(nonPrimeNumber)
let result = pr.primeDivisorsSum(42); // 2 + 3 + 7 = 12primeDivisorsTimes(nonPrimeNumber)
let result = pr.primeDivisorsTimes(42); // 2 * 3 * 7 = 42isMersennePrime(primeNumber)
let result = pr.isMersennePrime(127); // truenthMersennePrime(order)
let result = pr.nthMersennePrime(5); // 8191nthMersennePrimeExponents(order)
let result = pr.nthMersennePrimeExponents(5); // 13 - That means 2^13isPrimeOrDivisors(number)
If the number is prime it returns true, otherwise it returns prime divisors
primesSmallerThan(number)
let result = pr.primesSmallerThan(25); // [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ]closestPrime(number)
let result = pr.closestPrime(25); // 23randomPrime(minVal, maxVal)
let result = pr.randomPrime(25, 48); // 31whatWillThisPrimeBe(primeNumber)
let result = pr.whatWillThisPrimeBe(23); // It'll strengthen younextNPrimes(minVal, n)
let result = pr.nextNPrimes(25, 5); // [ 29, 31, 37, 41, 43 ]prevNPrimes(number)
let result = pr.prevNPrimes(25, 5); // [ 23, 19, 17, 13, 11 ]primesBetween(number1, number2)
let result = pr.primesBetween(80, 150); // [ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 ]firstNPrimes(count)
let result = pr.firstNPrimes(7); // [ 2, 3, 5, 7, 11, 13, 17 ]digits(number)
helper function
let result = pr.digits(1554); // 4sum(numbersArray)
helper function
let result = pr.sum([2,3,4]); // 9times(numbersArray)
helper function
let result = pr.times([2,3,4]); // 24remainDividedBy(number, divisor)
helper function
let result = pr.remainDividedBy(8,3); // 2printExecutionTime()
helper function That should be bottom of the script
pr.printExecutionTime(); // Execution time: 119ms