0.1.14 β€’ Published 12 months ago

create-localai v0.1.14

Weekly downloads
-
License
MIT
Repository
github
Last release
12 months ago

LocalAI Framework

Build AI apps fasterβ€”no LLM API keys, no cloud costs, no boilerplate. Just code.

LocalAI Framework is a zero-config, AI-native web framework that makes it easy to build applications with embedded LLMs. It provides a unified API for text generation, embeddings, and agentic workflows, all running locally on your machine.

Features

  • πŸš€ Zero Configuration: Get started in seconds with our CLI
  • πŸ€– Embedded LLM: Ships with TinyLlama for instant local inference
  • πŸ”Œ Unified API: Simple React hooks for AI functionality
  • πŸ’» Local-First: No API keys or cloud costs required
  • πŸ”„ Hybrid Mode: Optional cloud provider fallback
  • πŸ›  Developer Tools: Built-in AI playground and performance monitoring

Quick Start

# Create a new project
npx create-localai@latest my-ai-app

# Navigate to the project
cd my-ai-app

# Start the development server
npm run dev

Usage

import { useLLM } from '@localai/framework';

function MyAIComponent() {
  const { generate, isLoading } = useLLM();

  const handleClick = async () => {
    const response = await generate({
      prompt: "Write a short sci-fi story."
    });
    console.log(response.text);
  };

  return (
    <button onClick={handleClick} disabled={isLoading}>
      Generate Story
    </button>
  );
}

Configuration

// _app.tsx or similar
import { LLMProvider } from '@localai/framework';

function MyApp({ Component, pageProps }) {
  return (
    <LLMProvider config={{ model: 'tinyllama', temperature: 0.7 }}>
      <Component {...pageProps} />
    </LLMProvider>
  );
}

Advanced Features

Agentic Workflows

import { defineAgent } from '@localai/framework';

const CodeAgent = defineAgent({
  role: "Senior Developer",
  tools: ['writeFile', 'runTests'],
  model: "phind-codellama"
});

// Use the agent
const result = await CodeAgent.execute("Refactor this function to use async/await");

RAG (Coming Soon)

import { useRAG } from '@localai/framework';

const { query } = useRAG({
  documents: ['doc1.pdf', 'doc2.pdf'],
  model: 'tinyllama'
});

const answer = await query("What do the documents say about X?");

Contributing

We welcome contributions! Please see our Contributing Guide for details.

License

MIT Β© LocalAI Team

Support

0.1.14

12 months ago

0.1.13

12 months ago

0.1.12

12 months ago

0.1.11

12 months ago

0.1.10

12 months ago

0.1.9

12 months ago

0.1.8

12 months ago

0.1.7

12 months ago

0.1.6

12 months ago

0.1.5

12 months ago

0.1.4

12 months ago

0.1.3

12 months ago

0.1.2

12 months ago