1.0.0 • Published 4 months ago
datamagic-ml v1.0.0
DataMagic-ML
A lightweight JavaScript library for essential feature engineering tasks. Provides utilities for normalization, standardization, one-hot encoding, and missing value handling. Designed for simplicity and performance in both Node.js and browser environments.
Features
- Min-Max Scaling: Normalize data to a specific range.
- Standardization: Transform data to have zero mean and unit variance.
- One-Hot Encoding: Convert categorical data into numerical format.
- Missing Value Handling: Replace missing values with mean, median, or a constant.
Installation
You can install datamagic-ml
via npm:
npm install datamagic-ml
Or using yarn:
yarn add datamagic-ml
Usage
Importing the Library:
const { MinMaxScaler, StandardScaler, OneHotEncoder, CleanMissings } = require('datamagic-ml');
Min-Max Scaling
const scaler = new MinMaxScaler();
const data = [1, 2, 3, 4, 5];
scaler.fit(data);
console.log(scaler.transform(data));
Standardization
const stdScaler = new StandardScaler();
const data = [1, 2, 3, 4, 5];
stdScaler.fit(data);
console.log(stdScaler.transform(data));
One-Hot Encoding
const encoder = new OneHotEncoder();
encoder.fit(['red', 'green', 'blue']);
console.log(encoder.transform(['green', 'red', 'yellow', 'blue']));
Handling Missing Values
const testArray = [1, null, 3, 4, NaN, 6];
console.log(CleanMissings(testArray, 'mean'));
console.log(CleanMissings(testArray, 'median'));
console.log(CleanMissings(testArray, 'constant', 0));
License
Licensed under the MIT License.
1.0.0
4 months ago