facenet v0.10.3
FACENET
A TensorFlow backed FaceNet implementation for Node.js, which can solve face verification, recognition and clustering problems.
FaceNet is a deep convolutional network designed by Google, trained to solve face verification, recognition and clustering problem with efficiently at scale.
- directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity.
- optimize the embedding face recognition performance using only 128-bytes per face.
- achieves accuracy of 99.63% on Labeled Faces in the Wild (LFW) dataset, and 95.12% on YouTube Faces DB.
INSTALL
$ npm install facenet numjs flash-store
Peer Dependencies
numjs
flash-store
EXAMPLE
The follow examples will give you some intuitions for using the code.
- demo exmaple will show you how to do
align
for face alignment andembedding
to get face feature vector. - visualize example will calculate the similarity between faces and draw them on the photo.
1. Demo for API Usage
TL;DR: Talk is cheap, show me the code!
import { Facenet } from 'facenet'
const facenet = new Facenet()
// Do Face Alignment, return faces
const imageFile = `${__dirname}/../tests/fixtures/two-faces.jpg`
const faceList = await facenet.align(imageFile)
for (const face of faceList) {
console.log('bounding box:', face.boundingBox)
console.log('landmarks:', face.facialLandmark)
// Calculate Face Embedding, return feature vector
const embedding = await facenet.embedding(face)
console.log('embedding:', embedding)
}
faceList[0].embedding = await facenet.embedding(faceList[0])
faceList[1].embedding = await facenet.embedding(faceList[1])
console.log('distance between the different face: ', faceList[0].distance(faceList[1]))
console.log('distance between the same face: ', faceList[0].distance(faceList[0]))
Full source code can be found at here: https://github.com/zixia/node-facenet/blob/master/examples/demo.ts
The output should be something like:
image file: /home/zixia/git/facenet/examples/../tests/fixtures/two-faces.jpg
face file: 1-1.jpg
bounding box: {
p1: { x: 360, y: 95 },
p2: { x: 589, y: 324 }
}
landmarks: {
leftEye: { x: 441, y: 181 },
rightEye: { x: 515, y: 208 },
nose: { x: 459, y: 239 },
leftMouthCorner: { x: 417, y: 262 },
rightMouthCorner: { x: 482, y: 285 }
}
embedding: array([ 0.02453, 0.03973, 0.05397, ..., 0.10603, 0.15305,-0.07288])
face file: 1-2.jpg
bounding box: {
p1: { x: 142, y: 87 },
p2: { x: 395, y: 340 }
}
landmarks: {
leftEye: { x: 230, y: 186 },
rightEye: { x: 316, y: 197 },
nose: { x: 269, y: 257 },
leftMouthCorner: { x: 223, y: 273 },
rightMouthCorner: { x: 303, y: 281 }
}
embedding: array([ 0.03241, -0.0737, 0.0475, ..., 0.07235, 0.12581,-0.00817])
2. Visualize for Intuition
- Face is in the green rectangle.
- Similarity(distance) between faces showed as a number in the middle of the line.
- To identify if two faces belong to the same person, we could use an experiential threshold of distance: 0.75.
$ git clone git@github.com:zixia/node-facenet.git
$ cd facenet
$ npm install
$ npm run example:visualize
01:15:43 INFO CLI Visualized image saved to: facenet-visulized.jpg
3. Get the diffence of two face
Get the two face's distance, the smaller the number is, the similar of the two face
import { Facenet } from 'facenet'
const facenet = new Facenet()
const imageFile = `${__dirname}/../tests/fixtures/two-faces.jpg`
const faceList = await facenet.align(imageFile)
faceList[0].embedding = await facenet.embedding(faceList[0])
faceList[1].embedding = await facenet.embedding(faceList[1])
console.log('distance between the different face: ', faceList[0].distance(faceList[1]))
console.log('distance between the same face: ', faceList[0].distance(faceList[0]))
Output:
distance between the different face: 1.2971515811057608
distance between the same face: 0
In the example,
faceList0 is totally the same with faceList0, so the number is 0
faceList1 is different with faceList1, so the number is big.
If the number is smaller than 0.75, maybe they are the same person.
Full source code can be found at here: https://github.com/zixia/node-facenet/blob/master/examples/distance.ts
4. Save the face picture from a picture
Recognize the face and save the face to local file.
import { Facenet } from 'facenet'
const facenet = new Facenet()
const imageFile = `${__dirname}/../tests/fixtures/two-faces.jpg`
const faceList = await facenet.align(imageFile)
for (const face of faceList) {
await face.save(face.md5 + '.jpg')
console.log(`save face ${face.md5} successfuly`)
}
console.log(`Save ${faceList.length} faces from the imageFile`)
Full source code can be found at here: https://github.com/zixia/node-facenet/blob/master/examples/get-face.ts
FACENET MANAGER
UNDER HEAVY DEVELOPMENT NOW
Roadmap: release facenet-manager on version 0.8
The above ascii recording is just for demo purpose. Will replace it with facenet-manager later.
DOCUMENT
INSTALL & REQUIREMENT
$ npm install facenet
OS
Supported:
- Linux
- Mac
- Windows
Dependency
- Node.js >= 7 (8 is recommend)
- Tensorflow >= 1.2
- Python3 >=3.5 (3.6 is recommend)
Make sure you run those commands under Ubuntu 17.04:
sudo apt install python3-pip
pip3 install setuptools --upgrade
Ram
Neural Network Model | Task | Ram |
---|---|---|
MTCNN | Facenet#align() | 100MB |
Facenet | Facenet#embedding() | 2GB |
If you are dealing with very large images(like 3000x3000 pixels), there will need additional 1GB of memory.
So I believe that Facenet will need at least 2GB memory, and >=4GB is recommended.
API
Neural Network alone is not enough. It's Neural Network married with pre-trained model, married with easy to use APIs, that yield us the result that makes our APP sing.
Facenet is designed for bring the state-of-art neural network with bleeding-edge technology to full stack developers.
Facenet
import { Facenet } from 'facenet'
const facenet = new Facenet()
facenet.quit()
1. Facenet#align(filename: string): Promise\<Face[]>
Do face alignment for the image, return a list of faces.
2. Facenet#embedding(face: Face): Promise\<FaceEmbedding>
Get the embedding for a face.
face.embedding = await facenet.embedding(face)
Face
Get the 128 dim embedding vector for this face.(After alignment)
import { Face } from 'facenet'
console.log('bounding box:', face.boundingBox)
console.log('landmarks:', face.facialLandmark)
console.log('embedding:', face.embedding)
ENVIRONMENT VARIABLES
FACENET_MODEL
FaceNet neural network model files, set to other version of model as you like.
Default is set to models/
directory inside project directory. The pre-trained models is come from 20170512-110547, 0.992, MS-Celeb-1M, Inception ResNet v1, which will be download & save automatically by postinstall
script.
$ pwd
/home/zixia/git/node-facenet
$ ls models/
20170512-110547.pb
model-20170512-110547.ckpt-250000.index
model-20170512-110547.ckpt-250000.data-00000-of-00001
model-20170512-110547.meta
DOCKER
DEVELOP
$ git clone git@github.com:zixia/node-facenet.git
$ cd facenet
$ npm install
$ npm test
COMMAND LINE INTERFACES
align
Draw a rectangle with five landmarks on all faces in the input_image, save it to output_image.
$ ./node_modules/.bin/ts-node bin/align.ts input_image output_image
embedding
Output the 128 dim embedding vector of the face image.
$ ./node_modules/.bin/ts-node bin/embedding.ts face_image
RESOURCES
Machine Learning
- Machine Learning is Fun! Part 4: Modern Face Recognition with Deep Learning
- Face recognition using Tensorflow
- Google: Our new system for recognizing faces is the best one ever
- A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks
- What does Locality Sensitive Hashing Forests do? · maheshakya/my_first_project Wiki
- Average Face : OpenCV ( C++ / Python ) Tutorial
Python3
- Google Python Style Guide
- PyLint, PyChecker or PyFlakes?
- Useful Python Modules: Flake8
- PEP 8 - Style Guide for Python Code
- Python 3.6 venv — Creation of virtual environments
1. Typing
- Mypy syntax cheat sheet (Python 3)
- Python 3 Type Hints and Static Analysis
- typing — Support for type hints
1. NumJS
- Stackoverflow: numpy-like package for node
- Read/manipulate/display images using NumJs
- Numjs - Like NumPy, in JavaScript
- ndarray - Modular multidimensional arrays for JavaScript
Dataset
TODO
- NPM Module:
facenet
- Docker Image:
zixia/facenet
- Examples
- API Usage Demo
- Triple Distance Visulization Demo
- Performance Test(Align/Embedding/Batch)
- Validation Test(LFW Accuracy)
- Neural Network Models
- Facenet
- Mtcnn
- Batch Support
Python3async
&await
- Divide Different Neural Network to seprate class files(e.g. Facenet/Mtcnn)
- K(?)NN Alghorithm Chinese Whispers
- TensorFlow Sereving
- OpenAPI Specification(Swagger)
INSPIRATION
This repository is heavily inspired by the following implementations:
- FaceNet by David Sandberg @davidsandberg
- OpenFace by CMU Satya Lab @cmusatyalab
CREDITS
- Face alignment using MTCNN: Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks
- Face embedding using FaceNet: FaceNet: A Unified Embedding for Face Recognition and Clustering
- TensorFlow implementation of the face recognizer: Face recognition using Tensorflow
CONTRIBUTE
FaceNet Badge
[](https://github.com/zixia/node-facenet)
CHANGELOG
v0.9 master unstable
v0.8 (Apr 2018)
- Added
facenet-manager
command line tool for demo/validate/sort photos - Switch to
FlashStore
npm module as key-value database
v0.3 Sep 2017
- Added three cache classes: AlignmentCache & EmbeddingCache & FaceCache.
- Added cache manager utilities: embedding-cache-manager & alignment-cache-manager & face-cache-manager
- Added Dataset manager utility: lfw-manager (should be dataset-manager in future)
- BREAKING CHANGE:
Face
class refactoring.
v0.2 Aug 2017 (BREAKING CHANGES)
Facenet#align()
now accept a filename string as parameter.- BREAKING CHANGE:
FaceImage
class had been removed. - BREAKING CHANGE:
Face
class refactoring.
v0.1 Jul 2017
npm run demo
to visuliaze the face alignment and distance(embedding) in a three people photo.- Facenet.align() to do face alignment
- Facenet.embedding() to calculate the 128 dim feature vector of face
- Initial workable version
TROUBLESHOOTING
Dependencies
OS | Command |
---|---|
os x | brew install pkg-config cairo pango libpng jpeg giflib |
ubuntu | sudo apt-get install libcairo2-dev libjpeg8-dev libpango1.0-dev libgif-dev build-essential g++ |
fedora | sudo yum install cairo cairo-devel cairomm-devel libjpeg-turbo-devel pango pango-devel pangomm pangomm-devel giflib-devel |
solaris | pkgin install cairo pango pkg-config xproto renderproto kbproto xextproto |
windows | instructions on our wiki |
more os see node-canvas Wiki.
FAQ
facenet-manager
display not right under Windows
See: Running Terminal Dashboards on Windows
- Error when install:
No package 'XXX' found
It's related with the NPM module canvas
.
Error messages:
1. No package 'pixman-1' found
2. No package 'cairo' found
3. No package 'pangocairo' found
Solution for Ubuntu 17.04:
sudo apt install -y libpixman-1-dev
sudo apt-get install -y libcairo2-dev
sudo apt-get install -y libpango1.0-dev
Solution for Mac:
brew install python3
brew install pkg-config
brew install cairo
brew install pango
brew install libpng
brew install libjpeg
- Error when install:
fatal error: jpeglib.h: No such file or directory
It's related with the NPM module canvas
.
Solution for Ubuntu 17.04:
sudo apt-get install -y libjpeg-dev
- Error when run:
Error: error while reading from input stream
It is related with the libjpeg
package
Solution for Mac:
brew install libjpeg
- Error when run:
Error: Cannot find module '../build/Release/canvas.node'
at Function.Module._resolveFilename (module.js:527:15)
at Function.Module._load (module.js:476:23)
at Module.require (module.js:568:17)
at require (internal/module.js:11:18)
at Object.<anonymous> (/Users/jiaruili/git/node-facenet/node_modules/canvas/lib/bindings.js:3:18)
at Module._compile (module.js:624:30)
at Object.Module._extensions..js (module.js:635:10)
at Module.load (module.js:545:32)
at tryModuleLoad (module.js:508:12)
at Function.Module._load (module.js:500:3)
It seems the package not installed in a right way, like sharp
, canvas
, remove the package and reinstall it.
run
rm -rf node node_modules/canvas
// if sharp, then remove sharp folder
npm install
- Error when install
> facenet@0.3.19 postinstall:models /Users/jiaruili/git/rui/node-facenet
> set -e && if [ ! -d models ]; then mkdir models; fi && cd models && if [ ! -f model.tar.bz2 ]; then curl --location --output model.tar.bz2.tmp https://github.com/zixia/node-facenet/releases/download/v0.1.9/model-20170512.tar.bz2; mv model.tar.bz2.tmp model.tar.bz2; fi && tar jxvf model.tar.bz2 && cd -
x 20170512-110547.pb
x model-20170512-110547.ckpt-250000.data-00000-of-00001: (Empty error message)
tar: Error exit delayed from previous errors.
It seems this because not get the full model file successfully. See #issue63
Solution:
download the file from https://github.com/zixia/node-facenet/releases/download/v0.1.9/model-20170512.tar.bz2
rename the file model.tar.bz2
and move it to the folder models
try npm install
again
SEE ALSO
- Face Blinder: Assitant Bot for Whom is Suffering form Face Blindess
- Wechaty Blinder: Face Blinder Bot Powered by Wechaty
AUTHOR
Huan LI \zixia@zixia.net\ (http://linkedin.com/in/zixia)
COPYRIGHT & LICENSE
- Code & Docs © 2017 Huan LI \zixia@zixia.net\
- Code released under the Apache-2.0 License
- Docs released under Creative Commons
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago
8 years ago