2.0.1 β€’ Published 8 months ago

jpandas v2.0.1

Weekly downloads
-
License
BSD-3-Clause
Repository
github
Last release
8 months ago

πŸ“Ÿ A lightweight JavaScript package for working with tabular data, inspired by pandas in Python..

npm version DOWNLOADS

jpandas

  • πŸ“¦ Easy creation of tabular data structures in JavaScript.
  • πŸ“¦ Provides a DataFrame class inspired by pandas in Python.
  • πŸ‘¨β€πŸ« Developed by Rajnish.

Table of Contents

Installation

npm install jpandas

or

yarn add jpandas

Usage

Here’s a quick example of how to use the DataFrame Library in your project:

import DataFrame from 'jpandas';

const data = [
    { Name: 'Ankit', Age: 23, University: 'BHU' },
    { Name: 'Aishwarya', Age: 21, University: 'JNU' }
];

const df = new DataFrame(data);
console.log(df.getRowCount()); // Outputs: 2

Creating DataFrames

From an Array

You can create a DataFrame from a 2D array:

const data = [
    [1, 4, 7],
    [2, 5, 8],
    [3, 6, 9]
];
const df = new DataFrame(data);
console.log(df.getRowCount()); // Outputs: 3

From an Object

You can also create a DataFrame from an object where keys are column names:

const data = {
    Name: ['Ankit', 'Aishwarya', 'Shaurya', 'Shivangi'],
    Age: [23, 21, 22, 21],
    University: ['BHU', 'JNU', 'DU', 'BHU']
};
const df = new DataFrame(data);
console.log(df.getValue(0, 'Name')); // Outputs: 'Ankit'

From CSV String

To create a DataFrame from a CSV string:

const csvData = `Name,Age,University\nAnkit,23,BHU\nAishwarya,21,JNU`;
const df = new DataFrame(csvData);
console.log(df.getValue(1, 'Age')); // Outputs: 21

From JSON String

You can also create a DataFrame from a JSON string:

const jsonString = `[{"Name": "Ankit", "Age": 23, "University": "BHU"}, {"Name": "Aishwarya", "Age": 21, "University": "JNU"}]`;
const df = new DataFrame(JSON.parse(jsonString));
console.log(df.getValue(1, 'University')); // Outputs: 'JNU'

DataFrame Operations

Group By

Group your DataFrame by a specific column:

const grouped = df.groupBy('University');
console.log(Object.keys(grouped).length); // Outputs: number of unique universities

Rename Columns

You can rename columns easily:

const renamedDf = df.rename({ a: 'x', b: 'y' });
console.log(renamedDf.getColumns()); // Outputs: ['x', 'y', 'c']

Transform DataFrame

Transform your DataFrame using a custom function:

const transformedDf = df.transform(row => ({
    FullName: row.Name,
    Age: row.Age + 1
}));
console.log(transformedDf.getValue(0, 'FullName')); // Outputs: 'Ankit'

Calculate Mean

Calculate the mean of a numeric column:

const meanAge = df.mean('Age');
console.log(meanAge); // Outputs: average age

Contributing

License

Contact