0.9.1 • Published 8 months ago

kmap-assign v0.9.1

Weekly downloads
-
License
MIT
Repository
github
Last release
8 months ago

en de

\

Interactive strategy trainer for solving of polynomial, exponential and trigonometrical equations. \ has emerged in the context of the KMap project.

The goal of the strategy trainer is to train the ability to choose a suitable solution strategy separated from the skills, required to actually solve the equations (equivalence and term transformations).

Examples

Installation

npm i kmap-solvee

Usage with build

<script type="module">
  import 'kmap-solvee/kmap-solvee.js';
</script>

<kmap-solvee operations="exponential">e^x+e^(2x)=e</kmap-solvee>

Usage without build (load directly from cdn)

No installation required. Find a complete example webpage here.

<script type="module">
  import {KmapAssign} from 'https://cdn.jsdelivr.net/npm/kmap-solvee@0.9.5/+esm'
  window.customElements.define('kmap-solvee', KmapAssign);
</script>

<kmap-solvee operations="polynomial" solutions="-1,0,1" strategy="polynomial" hints='[
      {
        "match": "_x^4+_x^2=0",
        "operation": "substitute_poly",
        "message": "Kann man mit Substitution lösen, schneller gehts mit x² Ausklammern und dem Satz vom Nullprodukt"
      }]'>2x^4-2x^2=0</kmap-solvee>

Local Demo with web-dev-server

npm start

To run a local development server that serves the basic demo located in demo/index.html

Parameterization

NameTypeExplanation
operationsmultiple values, comma separated: exponential, polynomial, polynomial_root, trigonometrical and/or add, subtract, multiply, divide, sqrt, root, ln, arcsin, arccos, factorize, expand, zero_product, quadratic_formula, substitute_poly, substitute_trig, resubstitute, periodize
strategypolynomial, exponential or trigonometrical
solutionsmultiple values, comma separated, ASCIImath notated
hintsjson array of objects { match: string, operation: string, message: string }

Example

{
  "match": "(x+2)(x+1)^2x=0",
  "operation": "expand",
  "message": "Ausmultiplizieren ist nur selten eine gute Strategie. Hier führt es in eine Sackgasse!"
}]'>(x+2)(x+1)^2x=0</kmap-solvee>