0.9.22 • Published 10 months ago

kmap-solvee v0.9.22

Weekly downloads
-
License
MIT
Repository
github
Last release
10 months ago

en de

\

Interactive strategy trainer for solving of polynomial, exponential and trigonometrical equations. \ has emerged in the context of the KMap project.

The goal of the strategy trainer is to train the ability to choose a suitable solution strategy separated from the skills, required to actually solve the equations (equivalence and term transformations).

Examples

Installation

npm i kmap-solvee

Usage with build

<script type="module">
  import 'kmap-solvee/kmap-solvee.js';
</script>

<kmap-solvee operations="exponential">e^x+e^(2x)=e</kmap-solvee>

Usage without build (load directly from cdn)

No installation required. Find a complete example webpage here.

<script type="module">
  import {KmapSolvee} from 'https://cdn.jsdelivr.net/npm/kmap-solvee@0.9.5/+esm'
  window.customElements.define('kmap-solvee', KmapSolvee);
</script>

<kmap-solvee operations="polynomial" solutions="-1,0,1" strategy="polynomial" hints='[
      {
        "match": "_x^4+_x^2=0",
        "operation": "substitute_poly",
        "message": "Kann man mit Substitution lösen, schneller gehts mit x² Ausklammern und dem Satz vom Nullprodukt"
      }]'>2x^4-2x^2=0</kmap-solvee>

Local Demo with web-dev-server

npm start

To run a local development server that serves the basic demo located in demo/index.html

Parameterization

NameTypeExplanation
operationsmultiple values, comma separated: exponential, polynomial, polynomial_root, trigonometrical and/or add, subtract, multiply, divide, sqrt, root, ln, arcsin, arccos, factorize, expand, zero_product, quadratic_formula, substitute_poly, substitute_trig, resubstitute, periodize
strategypolynomial, exponential or trigonometrical
solutionsmultiple values, comma separated, ASCIImath notated
hintsjson array of objects { match: string, operation: string, message: string }

Example

{
  "match": "(x+2)(x+1)^2x=0",
  "operation": "expand",
  "message": "Ausmultiplizieren ist nur selten eine gute Strategie. Hier führt es in eine Sackgasse!"
}]'>(x+2)(x+1)^2x=0</kmap-solvee>
0.9.13

10 months ago

0.9.14

10 months ago

0.9.15

10 months ago

0.9.20

10 months ago

0.9.21

10 months ago

0.9.22

10 months ago

0.9.16

10 months ago

0.9.17

10 months ago

0.9.18

10 months ago

0.9.19

10 months ago

0.9.12

10 months ago

0.9.9

12 months ago

0.9.8

12 months ago

0.9.7

12 months ago

0.9.6

12 months ago

0.9.5

1 year ago

0.9.4

1 year ago

0.9.3

1 year ago

0.9.2

1 year ago

0.9.1

1 year ago

0.9.0

1 year ago