1.2.15 • Published 10 months ago

laigents v1.2.15

Weekly downloads
-
License
MIT
Repository
github
Last release
10 months ago

Laigents

For those of us who want to be lazy and build agents.

A simple to use set of abstractions for building AI agents and workflows. This system allows developers to instantiate agents and instruct workflows to complete tasks, with built-in support for memory and file operations.

Features

  • 🤖 Simple agent creation and management
  • 💾 Built-in memory management with Pinecone
  • 📝 File operations support
  • 🔄 Workflow automation
  • 🎯 Task-focused design
  • 🔌 Extensible adapter system

Installation

# Using npm
npm install laigents

# Using yarn
yarn add laigents

# Using pnpm
pnpm add laigents

Environment Setup

Create a .env file in your project root:

# OpenAI Configuration
OPENAI_API_KEY=your_openai_api_key
OPENAI_EMBEDDING_MODEL=text-embedding-ada-002  # Optional

# Pinecone Configuration
PINECONE_API_KEY=your_pinecone_api_key
PINECONE_ENVIRONMENT=your_pinecone_environment
PINECONE_INDEX=your_pinecone_index

Basic Usage

import { Laigent, AgentConfig, SystemConfig } from 'laigents';
import dotenv from 'dotenv';

dotenv.config();

// Configure your agents
const agents: AgentConfig[] = [
  {
    name: 'smith',
    systemPrompt: 'You are a helpful assistant.',
    purpose: 'answering',
    response: {
      type: 'code',
      language: 'typescript',
      maxTokens: 300,
    },
  },
];

// Configure the system
const config: SystemConfig = {
  openaiApiKey: process.env.OPENAI_API_KEY!,
  pineconeApiKey: process.env.PINECONE_API_KEY!,
  pineconeEnvironment: process.env.PINECONE_ENVIRONMENT!,
  pineconeIndexName: process.env.PINECONE_INDEX!,
  embeddingModel: process.env.OPENAI_EMBEDDING_MODEL,
};

// Create and initialize the Laigent instance
const ai = new Laigent(agents, config);

async function main() {
  await ai.initialize();
  const agent = ai.getAgent('smith');

  // Prompt the agent
  const response = await agent.prompt('I need a function that returns the sum of two numbers.');

  // Write the response to a file
  await agent.writeFile('sum.ts', response);

  // Read the file
  const readFileResult = await agent.readFile('sum.ts');
  console.log(readFileResult);

  // Save something to memory
  await agent.saveInMemory(readFileResult, 'text');

  // Search memory
  const memory = await agent.searchMemory('sum');
  console.log(memory);
}

main();

Advanced Usage

Multi-Agent Workflows

import { Laigent, AgentConfig, SystemConfig } from 'laigents';
import dotenv from 'dotenv';

dotenv.config();

// Configure multiple agents for different tasks
const agents: AgentConfig[] = [
  {
    name: 'function_creator',
    systemPrompt:
      'You are a TypeScript function creator. You create well-documented, efficient functions.',
    purpose: 'coding',
    response: {
      type: 'code',
      language: 'typescript',
      maxTokens: 300,
    },
  },
  {
    name: 'documenter',
    systemPrompt: 'You are a documentation expert. You create clear, comprehensive documentation.',
    purpose: 'reasoning',
    response: {
      type: 'markdown',
      maxTokens: 300,
    },
  },
];

// Configure the system
const config: SystemConfig = {
  openaiApiKey: process.env.OPENAI_API_KEY!,
  pineconeApiKey: process.env.PINECONE_API_KEY!,
  pineconeEnvironment: process.env.PINECONE_ENVIRONMENT!,
  pineconeIndexName: process.env.PINECONE_INDEX!,
  embeddingModel: process.env.OPENAI_EMBEDDING_MODEL,
};

// Create and initialize the Laigent instance
const ai = new Laigent(agents, config);

async function main() {
  await ai.initialize();

  // Get both agents
  const functionCreator = ai.getAgent('function_creator');
  const documenter = ai.getAgent('documenter');

  // Create a function
  const functionCode = await functionCreator.prompt(
    'Create a function that calculates the factorial of a number.'
  );

  // Write the function to a file
  await functionCreator.writeFile('factorial.ts', functionCode);

  // Get documentation for the function
  const functionDoc = await documenter.prompt(
    'Create documentation for this factorial function: ' + functionCode
  );

  // Write the documentation
  await documenter.writeFile('factorial.md', functionDoc);

  // Read both files
  const code = await functionCreator.readFile('factorial.ts');
  const docs = await documenter.readFile('factorial.md');

  console.log('Function Code:\n', code);
  console.log('Function Documentation:\n', docs);
}

main();

API Documentation

Laigent Class

The main class for managing agents and their configurations.

new Laigent(
  agents: AgentConfig[],
  config: SystemConfig
)

Methods

  • initialize(): Promise<void> - Initialize the instance and all agents
  • getAgent(name: string): Agent - Get an agent by name
  • getAllAgents(): Agent[] - Get all initialized agents
  • getAgentNames(): string[] - Get names of all agents

Agent Class

The class representing individual agents.

Methods

  • prompt(prompt: string): Promise<string> - Send a prompt to the agent
  • saveInMemory(content: string, contentType: ContentType): Promise<string[]> - Save content to agent's memory
  • searchMemory(query: string, limit?: number, filter?: MemorySearchFilter): Promise<Memory[]> - Search agent's memory
  • readFile(path: string): Promise<string> - Read a file
  • writeFile(path: string, content: string | object): Promise<void> - Write to a file
  • appendFile(path: string, content: string): Promise<void> - Append to a file
  • fileExists(path: string): Promise<boolean> - Check if a file exists
  • createDirectory(path: string): Promise<void> - Create a directory
  • executeCommand(command: string): Promise<string> - Execute a shell command

For more detailed documentation and examples, visit our GitHub repository.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT

1.2.15

10 months ago

1.2.13

10 months ago

1.2.11

10 months ago

1.2.9

10 months ago

1.2.7

10 months ago

1.2.5

10 months ago

1.2.3

10 months ago

1.2.0

10 months ago

1.0.2

10 months ago