0.0.5 • Published 10 months ago

llm-gateway v0.0.5

Weekly downloads
-
License
MIT
Repository
github
Last release
10 months ago

LLM Gateway

Open-source library built for fast and reliable connections to different LLM providers.

LLM Gateway for Python: https://pypi.org/project/open-llm-gateway/ https://github.com/ottic-ai/llm-gateway-python

The LLM Gateway is a lightweight, open-source library built for fast and reliable connections to LLMs.

It simplifies integrations with multiple providers, offering fallbacks, caching, and minimal latency with a client-side solution.

  • Minimize Downtime: Automatic retries and fallbacks to secondary providers like Azure or Entropic.
  • Automatic input params conversion: Automatically convert input params between OpenAI, Anthropic and Azure formats for fallbacks.
  • Faster Responses: Direct client-side requests for low latency.
  • Unified Control: A single interface to manage requests across LLMs.
  • Unified Output: Consistent output format across LLMs.
    openAI/AnthropicOutput:{...}
    llmGatewayOutput: {
        type: 'text' | 'tool_calls';
        content?: string; - content for text output
        tool_name?: string; - name of the tool for tool_calls
        arguments?: string; - arguments for the tool.
    }[]
}
  • Easy Model Switching: Change between OpenAI, Anthropic, and Azure models with a simple configuration change.

Contribute, fork, or raise issues— so we can make it better together.

Starring this repo helps other developers discover the LLM Gateway! ⭐

Installation

To install the library, use npm or yarn:

npm install llm-gateway

or

yarn add llm-gateway

Usage

Check examples in examples folder.

Here's a basic example of how to use the LLM Gateway library:

import { LLMGateway, EnumLlmModelType } from 'llm-gateway';

const openAIGateway = new LLMGateway({
    provider: EnumLLMProvider.OPENAI, // or ANTHROPIC, AZUREOPENAI, OPENAI
    apiKey: process.env['OPENAI_API_KEY'],
});
const openAIresponse = await openAIGateway.chatCompletion({
    messages: [
        { role: 'user', content: 'Write a one sentence story about a cat.' }
    ],
    model: 'gpt-4o-mini',
    max_completion_tokens:200
})

console.log('Response:', openAIresponse);

LLM Fallbacks Configuration

The LLM Gateway library supports configuring fallbacks to ensure that if one model fails, another can be used as a backup. This is useful for maintaining service availability and reliability.

Example Configuration

import {LLMGateway, EnumLLMProvider} from 'llm-gateway';

const llmGateway = new LLMGateway({
    provider: EnumLLMProvider.OPENAI, // or ANTHROPIC, AZUREOPENAI
    apiKey: 'INCORRECT_API_KEY_TO_EMULATE_FAILURE',
}, {
    fallbacks: {
        fallbackModel: 'claude-3-5-sonnet-latest',
        fallbackProvider: {
            apiKey: process.env['ANTHROPIC_API_KEY'],
            provider: EnumLLMProvider.ANTHROPIC
        }
    }
});


const response = await llmGateway.chatCompletion({
    messages: [
        { role: 'user', content: 'Write a one sentence story about a cat.' }
    ],
    model: 'gpt-4o-mini',
})

console.log('Response:', JSON.stringify(response.llmGatewayOutput, null ,2));

All examples work consistently across different providers (OpenAI, Anthropic, Azure) and automatically handle format conversion when falling back to a different provider.

Streaming Responses

The LLM Gateway supports streaming responses from all providers, with a unified interface that works consistently across OpenAI, Anthropic, and Azure.

Basic Streaming Example

const openAIGateway = new LLMGateway({
    provider: EnumLLMProvider.OPENAI, // or ANTHROPIC, AZUREOPENAI
    apiKey: process.env['OPENAI_API_KEY'],
});

const openAIStream = await openAIGateway.chatCompletionStream({
    messages: [{ role: 'user', content: 'Write a one sentence story about a cat.' }],
    model: 'gpt-4o-mini',
    temperature: 0.7,
});

for await (const chunk of openAIStream) {
    if(chunk.choices[0].finish_reason === 'stop') {
        console.log('message_stop');
    } else {
        console.log(chunk.choices[0].delta.content);
    }
}

Configuration

  • apiKey: Your API key for the chosen LLM provider.
  • modelType: The type of LLM provider you want to use (OPENAI, ANTHROPIC, AZUREOPENAI).
  • endpoint: (Optional) The endpoint for OpenAI models.
  • deployment: (Optional) The deployment name for Azure models.
  • apiVersion: (Optional) The API version for Azure models.

Contributing

Contributions are welcome! Please feel free to submit a pull request or open an issue.

License

This project is licensed under the MIT License.

0.0.5

10 months ago

0.0.4

10 months ago

0.0.3

10 months ago

0.0.2

10 months ago

0.0.1

10 months ago