math.interval-utils v0.3.0
math.interval-utils
This library provides a data structure and functions to do operations with intervals.
Version
0.3.0
Install
npm install math.inteval-utils --saveIndex
Interval
Data structure and valid values
Real interval can be represented with an pair of real numbers and two flags to indicate if these numbers are included or not in interval. This library defines the Interval type as the set of arrays of two objects with value and limit number properties:
[
{
value: (Number)
limit: (0|1)
},
{
value: (Number)
limit: (-1|0)
}
]value properties correspond to the values of interval and limit properties correspond to if values of interval are included or not.
- If limit is
0, it indicates that value is included. - If the
limitof first item is1, it indicates that firstvalueis not included in interval. If the
limitof second item is-1, it indicates that secondvalueis not included in interval.For example:
(1, 5]is represented with:
[
{
value: 1
limit: 1
},
{
value: 5
limit: 0
}
][-1, 3]is represented with:
[
{
value: -1
limit: 0
},
{
value: 3
limit: 0
}
](10, 12)is represented with:
[
{
value: 10
limit: 1
},
{
value: 12
limit: -1
}
]Empty interval
An interval is empty in these cases:
valueof first element is greater thanvalueof second element.valueof first and second elements are equal butlimitof first element is greater thanlimitof second element.
Functions
areDisjoint :: (Interval, Interval) -> Boolean
Given two interval inputs, it returns true or false depending on intervals are disjoint or not, respectively.
Example:
const { areDisjoint } = require('math.interval-utils')
// [1, 3)
const interval1 = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// (1, 2)
const interval2 = [
{value: 1, limit: 1},
{value: 2, limit: -1}
]
// {1}
const interval3 = [
{value: 1, limit: 0},
{value: 1, limit: 0}
]
areDisjoint(interval1, interval2) // false
areDisjoint(interval2, interval3) // trueareEqual :: (Interval, Interval) -> Boolean
Given two interval inputs, it returns true or false depending on intervals are equal or not, respectively.
Example:
const { areEqual } = require('math.interval-utils')
// [1, 3)
const interval1 = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// [1, 3)
const interval2 = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// [1, 3]
const interval3 = [
{value: 1, limit: 0},
{value: 3, limit: 0}
]
areEqual(interval1, interval2) // true
areEqual(interval2, interval3) // falsecontains :: (Interval, Interval) -> Boolean
Given two interval inputs, it returns true or false if first interval contains the second interval or not, respectively.
Example:
const { contains } = require('math.interval-utils')
// [1, 3)
const interval1 = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// (1, 2)
const interval2 = [
{value: 1, limit: 1},
{value: 2, limit: -1}
]
contains(interval1, interval2) // true
contains(interval2, interval1) // falseintersection :: (Interval, Interval) -> Interval
Given two interval inputs, it returns the intersection of these intervals.
Example:
const { intersection } = require('math.interval-utils')
const I = {}
// [1, 3)
I['[1, 3)'] = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// (1, 2)
I['(1, 2)'] = [
{value: 1, limit: 1},
{value: 2, limit: -1}
]
// (3, 4)
I['(3, 4)'] = [
{value: 3, limit: 1},
{value: 4, limit: -1}
]
intersection(I['[1, 3)'], I['(1, 2)']) // (1, 2)
intersection(I['(1, 2)'], I['(3, 4)']) // (3, 4)
intersection(I['[1, 3)'], I['(3, 4)']) // emptyisEmpty :: Interval -> Boolean
Given an interval, it returns true or false if interval is empty or not, respectively.
Example:
const { isEmpty } = require('math.interval-utils')
// [2, -2]
const interval1 = [
{value: 2, limit: 0},
{value: -2, limit: 0}
]
// (1, 1]
const interval2 = [
{value: 1, limit: 1},
{value: 1, limit: 0}
]
// [1, 1]
const interval3 = [
{value: 1, limit: 0},
{value: 1, limit: 0}
]
isEmpty(interval1) // true
isEmpty(interval2) // true
isEmpty(interval3) // falseisInterval :: Interval -> Boolean
It returns true or false if interval is an Interval.
Example:
const { isInterval } = require('math.interval-utils')
const interval1 = [
{value: 2, limit: 0},
{value: -2, limit: 0}
]
const interval2 = [
{value: -2, limit: 0}
]
const interval3 = [
{value: 2, limit: 0},
{value: Infinity, limit: -1}
]
isInterval(interval1) // true
isInterval(interval2) // false
isInterval(interval3) // truemultiIntersection :: (Interval, Interval) -> Interval
Given two lists of disjoint sorted intervals, it returns a new list of disjoint sorted intervals that represent the intersection of these sets.
Example:
// (1, 3) U {4} U [5, 6)
const listIntervals1 = [[
{value: 1, limit: 1},
{value: 3, limit: -1}
], [
{value: 4, limit: 0},
{value: 4, limit: 0}
], [
{value: 5, limit: 0},
{value: 6, limit: -1}
]]
// {0} U [1, 2] U (3, 4] U (5, 7)
const listIntervals2 = [[
{value: 0, limit: 0},
{value: 0, limit: 0}
], [
{value: 3, limit: 1},
{value: 4, limit: 0}
], [
{value: 5, limit: 1},
{value: 7, limit: -1}
]]
// returns (1, 2] U {4} U (5, 6)
multiIntersection(listIntervals1, listIntervals2) // [[
{value: 1, limit: 1},
{value: 2, limit: 0}
], [
{value: 4, limit: 0},
{value: 4, limit: 0}
], [
{value: 5, limit: 1},
{value: 6, limit: -1}
]]This method has better perfomance than recolecting the intersections of each interval of each lists and intersecting one by one.
numToInterval :: Number -> Interval
Given a number input, it returns an singleton interval that contains this number.
Example:
const { numToInterval } = require('math.interval-utils')
// returns {5} or [5, 5]
numToInterval(5) /* returns [
{value: 5, limit: 0},
{value: 5, limit: 0}
]*/parser :: string -> Either Interval String
Given a string that represents an interval, it returns an Either.Right value that saves an interval. If the string does not represent an interval it returns and Either.Left value that saves an error.
Example:
const { Right, Left } = require('data.either')
const { parser } = require('math.interval-utils')
parser('(2, 3]') /* Right [
{value: 2, limit: 1},
{value: 3, limit: 0}
] */
parser('{5}') /* Right([
{value: 5, limit: 0},
{value: 5, limit: 0}
]) */
parser('(2, 5(') // Left('"(2, 5(" does not match to interval expression')relativeComplement :: (Interval, Interval) -> Interval
Given two interval inputs, it returns a list of intevals that represents the relative complement. It means, the set of numbers that belongs to the first interval but not the second.
Example:
const { relativeComplement } = require('math.interval-utils')
const I = {}
// [1, 5)
I['[1, 5)'] = [
{value: 1, limit: 0},
{value: 5, limit: -1}
]
// (2, 3)
I['(2, 3)'] = [
{value: 2, limit: 1},
{value: 3, limit: -1}
]
// [4, 6]
I['[4, 6]'] = [
{value: 4, limit: 0},
{value: 6, limit: 0}
]
// returns [1, 2] U [3, 5)
relativeComplement(I['[1, 5)'], I['(2, 3)']) /* [[
{value: 1, limit: 0},
{value: 2, limit: 0}
], [
{value: 3, limit: 0},
{value: 5, limit: -1}
]] */
// returns [1, 4)
relativeComplement(I['[1, 5)'], I['[4, 6]']) /* [[
{value: 1, limit: 0},
{value: 4, limit: -1}
]] */
// returns (2, 3)
relativeComplement(I['(2, 3)'], I['[4, 6]']) /* [[
{value: 2, limit: 1},
{value: 3, limit: -1}
]] */// returns empty array relativeComplement(I'(2, 3)', I['1, 5)') // []
union :: Interval -> Interval
Given an array of intervals, it returns an array of sorted disjoint intervals that represents the union of these intervals.
Example:
const { union } = require('math.interval-utils').union
const I = {}
// [1, 3)
I['[1, 3)'] = [
{value: 1, limit: 0},
{value: 3, limit: -1}
]
// (2, 4)
I['(2, 4)'] = [
{value: 2, limit: 1},
{value: 4, limit: -1}
]
// [5, 5]
I['[5, 5]'] = [
{value: 5, limit: 0},
{value: 5, limit: 0}
]
// (5, 6)
I['(5, 6)'] = [
{value: 5, limit: 1},
{value: 6, limit: -1}
]
// returns [1, 4) U [5, 6)
union([interval1, interval2 interval3, interval4]) /* [[
{value: 1, limit: 0},
{value: 4, limit: -1}
], [
{value: 5, limit: 0},
{value: 6, limit: -1}
]] */LICENSE
MIT