1.1.22 • Published 5 years ago
medojs v1.1.22
Medojs
common
关键词提取
getKey((keys: Array), (list: Array), (fields: Array)); // 关键词列表 待匹配列表 待匹配字段
// 关键词列表数组前面的会优先匹配, 但是针对长度不一样的,还是会优先更长的那一个词 , 可以有3种形式,匹配此的列表
const list = [
{
title: "这个一个国家",
keyword: "国家",
},
];
const fieldsA = ["title"];
const fieldsB = ["title", "keyword"];
const keysA = [
{
meta: "A",
list: ["国家"],
},
];
const keysB = [["国家", "一个"], ["一个"]];
const keysC = ["国家", "一个"];
const resA = getKey(keysA, list, fieldsA); // {"0":{"title":{"list":[[4,5,"A","国家"]]}}}
const resB = getKey(keysA, list, fieldsB); // {"0":{"title":{"list":[[4,5,"A","国家"]]},"keyword":{"list":[[0,1,"A","国家"]]}}}
const resC = getKey(keysB, list, fieldsB); // {"0":{"title":{"list":[[4,5,0,"国家"],[2,3,0,"一个"]]},"keyword":{"list":[[0,1,0,"国家"]]}}}
const resD = getKey(keysC, list, fieldsB); // {"0":{"title":{"list":[[4,5,"string","国家"],[2,3,"string","一个"]]},"keyword":{"list":[[0,1,"string","国家"]]}}}
MD5
md5((str: string));
深拷贝
deepCopy((obj: Object));
数组对象化
objectArr((arr: Array), (key: String), (bool: Any));
const arrD = [1, 2, 3];
const arrE = [{ a: 1 }];
console.log(arrObject(arrD)); // { '1': true, '2': true, '3': true }
console.log(arrObject(arrE, "a")); // { '1': { a: 1 } }
console.log(arrObject(arrE, "a", false)); // { '1': false }
数组去重
uniqueArr((arr: Array)); // 简单类型去重 new Set
const arrC = [1, 2, 3, 4, "", " ", false, null, NaN];
console.log(arrUnique(arrC)); // [1, 2, 3, 4, "", " ", false, null, NaN]
console.log(arrUnique(arrC, true)); // [ 1, 2, 3, 4 ]
数组合并
concatArr((arr: Array));
const arrA = [1, 2, [3, 4]];
const arrB = [5, 6, [7, 8]];
console.log(arrConcat(arrA, arrB)); // [ 1, 2, [ 3, 4 ], 5, 6, [ 7, 8 ] ]
console.log(arrConcat([arrA, arrB])); // [ 1, 2, [ 3, 4 ], 5, 6, [ 7, 8 ] ]
nodejs
定制打印
customLog;
customLog.success();
customLog.start();
// https://github.com/klaussinani/signale/blob/master/docs/readme.zh_CN.md
// https://github.com/klaussinani/signale/blob/ac40b9a0203334de256d1f097dc59b2af1e80bb0/src/types.js
elastic
const { esScroll, esClient } = require("../nodejs").elastic;
// esClient nodejs 客户端
// https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/master/index.html
async function init() {
const query = {
query: {
match_phrase: {
title: "小细胞肺癌",
},
},
};
const config = ["wf_new", "10s", 10000, query];
const count = await esScroll.count("wf_new", query); // 584
const data = await esScroll(...config);
// {
// date: '2016-11-01',
// tier: '7',
// rank: '2/4',
// id: 'zl201609016',
// title: '非小细胞肺癌对EGFR-TKIs产生获得性耐药后发生小细胞肺癌转化的研究进展',
// keyword: '癌,非小细胞肺,受体,表皮生长因子,抗药性,肿瘤,细胞转化,肿瘤',
// uniqueId: '001528d89462296d9688f9e0a6a4adea',
// DID: 'a0452cf44295283a5926b12a64bd547d',
// md5: '98bb214bcb2aaf8'
// }
config.push(1);
const dataB = await esScroll(...config);
// {
// _index: 'wf_new',
// _type: '_doc',
// _id: 'IuOTH3MBG2Bo3g5gyVz4',
// _score: 22.218872,
// _source: {
// date: '2016-11-01',
// tier: '7',
// rank: '2/4',
// id: 'zl201609016',
// title: '非小细胞肺癌对EGFR-TKIs产生获得性耐药后发生小细胞肺癌转化的研究进展',
// keyword: '癌,非小细胞肺,受体,表皮生长因子,抗药性,肿瘤,细胞转化,肿瘤',
// uniqueId: '001528d89462296d9688f9e0a6a4adea',
// DID: 'a0452cf44295283a5926b12a64bd547d',
// md5: '98bb214bcb2aaf8'
// }
// }
}
文件操作
const fileAction = new FileAction(dir); // dir 根目录,定位 rpath
fileAction.rPath(); // 定位到根目录
fileAction.read(); // 递归读取
fileAction.remove(); // 递归删除
fileAction.mkdir(); // 递归创建
限制 HTTP 请求数
const medoLimitHttp = new LimitHttp(count); // 每分钟请求数
const bool = medoLimitHttp.add(name); // name 用户名,返回是否还有请求次数
mongoose
// 比较多,有时间再写
1.1.22
5 years ago
1.1.21
5 years ago
1.1.19
5 years ago
1.1.20
5 years ago
1.1.18
5 years ago
1.1.17
5 years ago
1.1.16
5 years ago
1.1.15
5 years ago
1.1.12
5 years ago
1.1.11
5 years ago
1.1.10
5 years ago
1.1.14
5 years ago
1.1.13
5 years ago
1.1.9
5 years ago
1.1.8
5 years ago
1.1.7
5 years ago
1.1.6
5 years ago
1.1.5
5 years ago
1.1.4
5 years ago
1.1.3
5 years ago
1.1.2
5 years ago
1.1.1
5 years ago
1.1.0
5 years ago
1.0.27
5 years ago
1.0.26
5 years ago
1.0.25
5 years ago
1.0.24
5 years ago
1.0.23
5 years ago
1.0.22
5 years ago
1.0.21
5 years ago
1.0.20
5 years ago
1.0.19
5 years ago
1.0.18
5 years ago
1.0.17
5 years ago
1.0.16
5 years ago
1.0.15
5 years ago
1.0.14
5 years ago
1.0.13
5 years ago
1.0.11
5 years ago
1.0.12
5 years ago
1.0.10
5 years ago
1.0.9
5 years ago
1.0.8
5 years ago
1.0.7
5 years ago
1.0.6
5 years ago
1.0.5
5 years ago
1.0.4
5 years ago
1.0.3
5 years ago
1.0.2
5 years ago
1.0.1
5 years ago
1.0.0
5 years ago