0.1.7 • Published 10 years ago

multtest v0.1.7

Weekly downloads
1
License
MIT
Repository
github
Last release
10 years ago

NPM version Build Status Dependency Status

multtest

adjustments of p-values for multiple comparisons

Installation

npm install multtest

Usage:

Require as follows:

var multtest = require('multtest');

multtest exports the following functions:

.bonferroni(pvalues,[numHypotheses])

Given an input array of pvalues, pvalues, this function calculates the Bonferroni correction by multiplying each p-value by m, the number of tested hypotheses. This is by default equal to the length of the pvalues array, but can be optionally supplied via the numHypotheses parameter.

.fdr(pvalues,[numHypotheses])

Given an input array of pvalues, pvalues, the .fdr function calculates the false-discovery-rate adjusted p-values.

.bY(pvalues,[numHypotheses])

Given an input array of pvalues, pvalues, the .bY function calculates adjusted p-values according to the method by Benjamini & Yekutieli.

.adjustSignificanceLevel(pvalues, alpha)

This function can be used in the construction of FDR adjusted confidence intervals. It has two parameters: pvalues is an array of p-values, alpha is the significance level we wish to control the FDR at. The function returns an adjusted signficance level alpha_fdr which has to be used as the nominal significance level when constructing confidence intervals. It is calculated via the formula

alpha_fdr = ( (k + 1) / m ) * alpha,

where m is the total number of hypotheses and k is the number of rejected hypotheses.

License

MIT © Philipp Burckhardt

0.1.7

10 years ago

0.1.6

10 years ago

0.1.5

10 years ago

0.1.4

10 years ago

0.1.3

10 years ago

0.1.2

10 years ago

0.1.1

10 years ago

0.1.0

10 years ago