openai-tokens-count v1.0.1
openai-tokens-count
OpenAI tokens calculator, with function calls, images, and messages in one call
Token Estimation
This package provides a utility function to estimate the token count for OpenAI chat completions.
Installation
To install the package, run the following command:
npm install openai-tokens-countUsage
Here's an example of how to use the estimateTokens function:
import { estimateTokens } from 'openai-tokens-count';
import OpenAI from "openai"; // for typings
const message: OpenAI.Chat.ChatCompletionCreateParamsNonStreaming = {
  model: 'gpt-4-turbo',
  messages: [{ role: 'user', content: 'Hello' }],
};
const run = async () => {
  const estimatedTokens = await estimateTokens(message);
  console.log('Estimated tokens:', estimatedTokens);
}
run();The function returns the estimated token count for the given input.
Advanced Usage
For a more complex scenario, including multiple messages, tool calls, various parameters, and image estimation, you can use the following example:
import { estimateTokens } from 'openai-tokens-count';
import OpenAI from "openai"; // for typings
const advancedMessage: OpenAI.Chat.ChatCompletionCreateParamsNonStreaming = {
  model: "gpt-4-turbo",
  messages: [
    { role: "system", content: "You are a weather predictor" },
    { role: "user", content: "Hello! How cloudy is it in London?" },
    {
      role: "assistant",
      content: "",
      tool_calls: [
        {
          id: "call_w3cN5nYrqIbu6HLm7tYMP2OZ",
          type: "function",
          function: {
            name: "get_current_weather_by_coords",
            arguments: `{
              "coords": {
                "lat": "51.5074",
                "long": "-0.1278"
              },
              "unit": "celsius"
            }`
          }
        }
      ]
    },
    {
      role: "tool",
      content: '{ "temperature": 15, "condition": "cloudy" }',
      tool_call_id: "call_w3cN5nYrqIbu6HLm7tYMP2OZ",
    },
    {
      role: "user",
      content: [
        {
          type: "text",
          text: "What’s in this image?"
        },
        {
          type: "image_url",
          image_url: {
            url: "https://raw.githubusercontent.com/n0isy/openai-tokens-count/master/tests/__fixtures__/1t-512x512.png",
            detail: "high"
          }
        }
      ],
    }
  ],
  tools: [
    {
      type: "function",
      function: {
        name: "get_current_weather_by_coords",
        description: "Get the current weather by coordinates",
        parameters: {
          type: "object",
          properties: {
            coords: {
              type: "object",
              description: "(lat, long)",
              properties: {
                lat: { type: "string", description: "latitude" },
                long: { type: "string", description: "longitude" },
              },
            },
            unit: { type: "string", enum: ["celsius", "fahrenheit"] },
          },
          required: ["coords"],
        },
      },
    }
  ],
};
const runAdvanced = async () => {
  const estimatedTokens = await estimateTokens(advancedMessage);
  console.log('Estimated tokens for advanced message:', estimatedTokens);
}
runAdvanced();Testing
To run the tests, use the following command:
npm testThe tests are defined in the test/run.spec.ts file. They use the Jest testing framework to run test cases and compare the estimated token counts with the expected values.
Preparing Tests
To prepare test cases and generate the tokens.json file, follow these steps:
Create a directory named
test/casesand add test case files inside it. Each test case file should export an object with the following properties:model(string): The name of the OpenAI model to use for chat completion.messages(array): An array of message objects, each containing aroleandcontentproperty.
Example test case file (
hello-world.ts):export default { model: 'gpt-4-turbo', messages: [{ role: 'user', content: 'Hello' }], };Run the
tests/prepare-from-openai.tsscript to generate thetokens.jsonfile:npm run makeTestsThis script reads all the test case files from the
test/casesdirectory, sends them to the OpenAI API for chat completion, and saves the actual token counts in thetest/tokens.jsonfile.The
tokens.jsonfile will be used by the tests to compare the estimated token counts with the actual values.Example
tokens.jsonfile:{ "hello-world.ts": 8 }
Now you're ready to run the tests and verify the token estimation functionality.
Contributing
Contributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request.
License
This package is open-source and available under the MIT License.