1.0.13 • Published 2 years ago

openai_embedding v1.0.13

Weekly downloads
-
License
-
Repository
-
Last release
2 years ago

openai_embedding

package to help inputting and storing long reference text, and extract information when asking prompt

Example usage:

//this will return all vector map in {text:{embedding:num[],tokensNum:num}}

let embedMap=await computeDocEmbeddings("hello, hows it going","come on!","long long long text long long long text long long long text long long long text" + " long long long text long long long text long long long text long long long text"+ " long long long text long long long text long long long text long long long text"+ " long long long text long long long text long long long text long long long text"+ " long long long text long long long text long long long text long long long text"+ " long long long text long long long text long long long text long long long text");

//pass the vector map and question text, then //this will return related context in string[]

await constructPrompt("How long is the text?",embedMap);

//this will return an array of text, separated in to coherent sections

intoParagraphs({raw:"some paragraphs text", maxtoken=400});

1.0.13

2 years ago

1.0.12

2 years ago

1.0.11

2 years ago

1.0.10

2 years ago

1.0.9

2 years ago

1.0.8

2 years ago

1.0.7

2 years ago

1.0.6

2 years ago

1.0.5

2 years ago

1.0.4

2 years ago

1.0.3

2 years ago

1.0.2

2 years ago

1.0.1

2 years ago

1.0.0

2 years ago