2.0.2 • Published 12 months ago

piecewise-linear-regression v2.0.2

Weekly downloads
-
License
ISC
Repository
github
Last release
12 months ago

piecewise-linear-regression

A TypeScript implementation of piecewise linear regression with cross-validation and grid search to determine the optimal number of knots.

Table of Contents

Installation

To install the package, use npm:

npm install piecewise-linear-regression

Usage

Here's an example of how to use the PiecewiseLinearRegression class:

import { PiecewiseLinearRegression } from 'piecewise-linear-regression';

const x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
const y = [2, 4, 6, 5, 7, 8, 9, 10, 12, 14];

const plrParams = {
    x: x,
    y: y,
    numberOfPossibleKnotsValues: 10,
    maxKnotCount: 5,
    numFolds: 5,
    refinementIterations: 8
};

const plr = new PiecewiseLinearRegression(plrParams);

console.log(plr.getCrossValidationResults());
console.log(plr.getBestKnotCount());
console.log(plr.getModel());
console.log(plr.getRMSE());

const plotData = plr.getPlotData();
console.log(plotData.original);
console.log(plotData.fitted);
console.log(plotData.plotHtml);

API

PiecewiseLinearRegressionParams

Parameters for initializing PiecewiseLinearRegression.

  • x: number[] - Array of x values.
  • y: number[] - Array of y values.
  • numberOfPossibleKnotsValues: number (optional) - Number of possible knot values for the grid search. Default is 10.
  • maxKnotCount: number (optional) - Maximum number of knots to evaluate. Default is 5.
  • numFolds: number (optional) - Number of folds for cross-validation. Default is 5.
  • refinementIterations: number (optional) - Number of refinement iterations. Default is 8.

PiecewiseLinearRegression

Class for performing piecewise linear regression.

getCrossValidationResults()

Returns the cross-validation results as an array of objects, each containing:

  • knotCount: number - The number of knots.
  • trainRMSE: number - The root mean squared error (RMSE) on the training set.
  • testRMSE: number - The RMSE on the test set.

Example:

[
  {
    "knotCount": 1,
    "trainRMSE": 105299414.99391018,
    "testRMSE": 145637666.0650324
  },
  {
    "knotCount": 2,
    "trainRMSE": 86685860.99063551,
    "testRMSE": 133999506.11119208
  },
  {
    "knotCount": 3,
    "trainRMSE": 63138045.08756206,
    "testRMSE": 122360808.70402923
  },
  {
    "knotCount": 4,
    "trainRMSE": 45925209.68797879,
    "testRMSE": 187103043.9565541
  },
  {
    "knotCount": 5,
    "trainRMSE": 35060547.07612642,
    "testRMSE": 106186937.9715987
  }
]
getBestKnotCount()

Returns the best knot count determined by cross-validation.

Example:

const bestKnotCount = plr.getBestKnotCount();
console.log(bestKnotCount); // 5
getModel()

Returns the fitted model as an object containing:

  • knots: number[] - The positions of the knots.
  • betas: number[] - The coefficients for the piecewise linear segments.

Example:

const model = plr.getModel();
console.log(model);
// {
//   knots: [2020.1442522321427, 2020.3200334821431, 2020.8752790178569, 2022.0443638392858, 2022.352678571429],
//   betas: [-341218523983.126, 169192303.77881718, -2635458768.356966, 3347396804.36822, -675523302.5786195, -1157763747.8393607, 1218123646.153238]
// }
getRMSE()

Returns the root mean squared error (RMSE) of the fitted model.

Example:

const rmse = plr.getRMSE();
console.log(rmse); // 45600885.60747723
getPlotData()

Returns an object containing the original data, fitted data, and HTML for plotting.

Example:

const plotData = plr.getPlotData();
console.log(plotData);
/*
{
  original: {
    x: [2019.25, 2019.5, 2019.75, 2020, 2020.25, 2020.5, 2020.75, 2021, 2021.25, 2021.5, 2021.75, 2022, 2022.25, 2022.5, 2022.75, 2023, 2023.25, 2023.5, 2023.75, 2024, 2024.25],
    y: [480908734.61, 418598119.85, 427460738.33, 618999891.13, 313439976.55, 299484629.79, 519625618.31, 665667339.66, 708570866.01, 766344390.58, 749944347.47, 902043201.84, 674475488.5, 631845186.9, 652163993.42, 779891715.88, 797533136.93, 836989815.67, 956302630.94, 1124572881.12, 1010948927.96]
  },
  fitted: {
    x: [2019.25, 2020.1442522321427, 2020.3200334821431, 2020.8752790178569, 2022.0443638392858, 2022.352678571429, 2024.25],
    y: [423035422.25061035, 574336017.5661621, 140812615.5883789, 630056303.138794, 870428369.5217285, 576864428.3261719, 1081489194.3897705]
  },
  plotHtml: '<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><script src="https://cdn.plot.ly/plotly-latest.min.js"></script><title>Scatter and Line Plot</title><style>body, html {width: 100%;height: 100%;margin: 0;padding: 0;display: flex;justify-content: center;align-items: center;}#plot-container {width: 100%;max-width: 1200px;height: 50vw;max-height: 800px;}#plot {width: 100%;height: 100%;}</style></head><body><div id="plot-container"><div id="plot"></div></div><script>var traceOrig = {x: [2019.25,2019.5,2019.75,2020,2020.25,2020.5,2020.75,2021,2021.25,2021.5,2021.75,2022,2022.25,2022.5,2022.75,2023,2023.25,2023.5,2023.75,2024,2024.25],y: [480908734.61,418598119.85,427460738.33,618999891.13,313439976.55,299484629.79,519625618.31,665667339.66,708570866.01,766344390.58,749944347.47,902043201.84,674475488.5,631845186.9,652163993.42,779891715.88,797533136.93,836989815.67,956302630.94,1124572881.12,1010948927.96],mode: 'lines+markers',type: 'scatter',name: 'Original Data',line: {dash: 'dot',width: 1,color: 'rgb(31, 119, 180)'},marker: {size: 14,color: 'rgb(31, 119, 180)'}};var traceFit = {x: [2019.25,2020.1442522321427,2020.3200334821431,2020.8752790178569,2022.0443638392858,2022.352678571429,2024.25],y: [423035422.25061035,574336017.5661621,140812615.5883789,630056303.138794,870428369.5217285,576864428.3261719,1081489194.3897705],mode: 'lines',type: 'scatter',name: 'PLR Fit',line: {dash: 'solid',width: 3,color: 'rgb(255, 127, 14)'}};var data = [traceOrig, traceFit];var layout = {title: 'Scatter and Line Plot',xaxis: {title: 'X Axis'},yaxis: {title: 'Y Axis'},autosize: true};Plotly.newPlot('plot', data, layout, {responsive: true});</script></body></html>'
}
*/

Development

To build the project, run:

npm run build

To test the project, run:

npm run disttest
npm run srctest

License

This project is licensed under the ISC License. See the LICENSE file for details.

2.0.2

12 months ago

2.0.1

12 months ago

2.0.0

12 months ago

1.0.0

12 months ago