prime-functions v1.2.2
Prime Functions (Useful Prime Numbers Functions)

Primes are of the utmost importance to number theorists because they are the building blocks of whole numbers, and important to the world because their odd mathematical properties make them perfect for our current uses. On that matter we've built a library to create and find prime numbers
Features
- Basic prime number generators
- Primes' indexes
- High performance
- Some special prime arrays
- Relations with normal integers
Playground
You can play with the functions on prime-functions.truncgil.com

Installation
Usage
const pr = require('prime-functions');
console.log(pr.isPrime(13)); //trueYou can simply use the prime-functions on the client side:
<script src="https://cdn.jsdelivr.net/npm/prime-functions/index.min.js"></script>
<script>
const pr = primeFunctions;
console.log(pr.isPrime(13)); //true
</script>Functions
- Main Functions
- isPrime
- nthPrime
- indexOfPrime
- nthPrimesSum
- nthPrimesTimes
- nextPrime
- prevPrime
- primeSmallerThan
- primeBiggerThan
- primeDivisors
- primeDivisorsSum
- primeDivisorsTimes
- isPrimeOrDivisors
- primesSmallerThan
- closestPrime
- randomPrime
- whatWillThisPrimeBe
- nextNPrimes
- prevNPrimes
- primesBetween
- firstNPrimes
- isEmirp
- nthEmirp
- hasTwinPrime
- isTruncatable
- truncatableValues
- nthTruncatablePrime
- isPandigitalPrime
- Theoretical Functions
- Helper Functions
isPrime(number)
Return if a number is Prime Number
let result = pr.isPrime(13); // truelet result = pr.isPrime(28); // falsenthPrime(order)
Get nth prime
let result = pr.nthPrime(5); // 11indexOfPrime(primeNumber)
Get index of prime number
let result = pr.indexOfPrime(13); // 5Index starts from 0
nthPrimesSum(...arguments)
let result = pr.nthPrimesSum(3,5,7); // 5 + 11 + 17 = 33nthPrimesTimes(...arguments)
let result = pr.nthPrimesTimes(3,5,7); // 5 * 11 * 17 = 935nextPrime(currentPrime)
let result = pr.nextPrime(17); // 19prevPrime(currentPrime)
let result = pr.prevPrime(17); // 13primeSmallerThan(number)
let result = pr.primeSmallerThan(100); // 97primeBiggerThan(number)
let result = pr.primeBiggerThan(100); // 101primeDivisors(nonPrimeNumber)
let result = pr.primeDivisors(42); // [2,3,7]primeDivisorsSum(nonPrimeNumber)
let result = pr.primeDivisorsSum(42); // 2 + 3 + 7 = 12primeDivisorsTimes(nonPrimeNumber)
let result = pr.primeDivisorsTimes(42); // 2 * 3 * 7 = 42isMersennePrime(primeNumber)
Checks if a prime is a Mersenne Prime
let result = pr.isMersennePrime(127); // truenthMersennePrime(order)
Get nth Mersenne Prime
let result = pr.nthMersennePrime(5); // 8191nthMersennePrimeExponents(order)
Get nth Mersenne Prime's exponents
let result = pr.nthMersennePrimeExponents(5); // 13 - That means 2^13isPrimeOrDivisors(number)
If the number is prime it returns true, otherwise it returns prime divisors
primesSmallerThan(number)
let result = pr.primesSmallerThan(25); // [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ]closestPrime(number)
let result = pr.closestPrime(25); // 23randomPrime(minVal, maxVal)
let result = pr.randomPrime(25, 48); // 31whatWillThisPrimeBe(primeNumber)
let result = pr.whatWillThisPrimeBe(23); // It'll strengthen younextNPrimes(minVal, n)
let result = pr.nextNPrimes(25, 5); // [ 29, 31, 37, 41, 43 ]prevNPrimes(number)
let result = pr.prevNPrimes(25, 5); // [ 23, 19, 17, 13, 11 ]primesBetween(number1, number2)
let result = pr.primesBetween(80, 150); // [ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 ]firstNPrimes(count)
let result = pr.firstNPrimes(7); // [ 2, 3, 5, 7, 11, 13, 17 ]digits(number)
helper function
let result = pr.digits(1554); // 4sum(numbersArray)
helper function
let result = pr.sum([2,3,4]); // 9times(numbersArray)
helper function
let result = pr.times([2,3,4]); // 24remainDividedBy(number, divisor)
helper function
let result = pr.remainDividedBy(8,3); // 2printExecutionTime()
helper function That should be bottom of the script
pr.printExecutionTime(); // Execution time: 119msbeautifyInteger()
helper function
pr.beautifyInteger(123123123); // 123.123.123reverseNumber(number)
helper function
pr.reverseNumber(123456); // 654321integerToText()
helper function
pr.integerToText(1234567890); // bcdefghijaintegerToString(number)
helper function
pr.integerToString(1234567890); // '1234567890'integerToArray(number)
helper function
pr.integerToArray(1234567890); // ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']firstNDigits(number, n, returnAsInteger=true)
helper function
Returns number first n digits
pr.firstNDigits(1234567890, 4); // 1234lastNDigits(number, n, returnAsInteger=true)
helper function
Returns number last n digits
pr.lastNDigits(1234567890, 4); // 7890isEmirp(number)
returns if the given number is emirp.
pr.isEmirp(13); // true
pr.isEmirp(31); // true
pr.isEmirp(19); // falsenthEmirp(number)
returns nth emirp. 1 is the 11
pr.nthEmirp(2); // 13
pr.nthEmirp(5); // 37hasTwinPrime(number, returnItsTwin=true)
check if the prime has a twin
pr.hasTwinPrime(3); // 5
pr.hasTwinPrime(5); // [5, 7]
pr.hasTwinPrime(311); // 313
pr.hasTwinPrime(3, false); // True
pr.hasTwinPrime(37); // falsefactorial(number)
helper
pr.factorial(3); // 6
pr.factorial(pr.factorial(3)); // 720wilsonsTheorem(n, returnWithExplanation=true)
The Wilson's Theorem.
n+1 should be prime number if and only if n! mod(n+1) = n.
returnWithExplanation is the conditions and explanation of Wilson's Theorem.
pr.wilsonsTheorem(6);
/*
{
formula: 'FORMULA: f(n) = ( 6! mod(6+1) / n ) * ( 6+1 ) + 2 --- CONDITIONS: if 6+1 is prime if and only if 6! mod(6+1) = 6 ',
result: 7
}
*/
pr.wilsonsTheorem(6, false); // 7phi(n)
Euler's phi and also known as totient function.
Function can be used as both phi and totient
pr.totient(1) // 1
pr.phi(2) // 1
pr.phi(3) // 2
pr.phi(4) // 2
pr.totient(5) // 4
pr.phi(6) // 2
pr.phi(7) // 6
pr.totient(8) // 4
pr.phi(9) // 6
pr.phi(10) // 4isTruncatable(number)
Check if the given number is Truncatable Prime
pr.isTruncatable(3797); //true
pr.isTruncatable(373); //true
pr.isTruncatable(23); //falsetruncatableValues(number)
Returns number's Truncatable values
pr.truncatableValues(3797);
/*
{
leftToRight: [ 3, 37, 379, 3797 ],
rightToLeft: [ 7, 97, 797, 3797 ]
}
*/nthTruncatablePrime(n)
Finds the nth Truncatable Prime
pr.nthTruncatablePrime(10); // 3797isPanditalPrime(n)
Checks if the given number is Pandigital Prime
pr.isPandigitalPrime(2143); // true6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago