0.3.2 • Published 2 years ago

squoval v0.3.2

Weekly downloads
-
License
SEE LICENSE IN LI...
Repository
github
Last release
2 years ago

$$ \begin{align} x &= \mathrm{erf}\ \mathrm{atanh}\ \mathrm{cos}\ t \ y &= \mathrm{erf}\ \mathrm{atanh}\ \mathrm{sin}\ t \end{align} $$

Squoval

flatter and smoother rounded corners · web components

npm.io npm.io npm.io npm.io npm.io npm.io

npm i squoval
<script src="https://cdn.skypack.dev/squoval?min" type="module"></script>
<squoval-element></squoval-element>

proof notes

let us say that f(t) = erf(cot(t)) h(t) = erf t h'(t) = 2 e^(-z^2) / √π g(t) = cot t g'(t) = csc² t

the chain rule states that f'(x) = h'(g(t))g'(t) so f'(t) = (2 / √π) e^(-cot² t) csc² t

the product rule states that (uv)' = u'v + uv' so u' = (e^(-cot² t))' = -2 cot(t) csc²(t) e^(-cot² t)

u' = -2 cot(t) csc²(t) u

f⁽ⁿ⁾(t) ∝ u ∝ e^(-cot² t)

therefore f(t) is flat wherever e^(-cot² t) = 0

limit of e^(-cot² t) as t -> 0 = 0

limit of e^(-cot² t) as t -> nπ = 0

f(t) is asymptotically flat at nπ where n is an integer

0.3.0

2 years ago

0.2.1

2 years ago

0.2.0

2 years ago

0.3.2

2 years ago

0.2.3

2 years ago

0.3.1

2 years ago

0.2.2

2 years ago

0.1.1

3 years ago

0.1.0

3 years ago

0.0.31

3 years ago

0.0.30

3 years ago

0.0.29

3 years ago

0.0.28

3 years ago

0.0.27

3 years ago

0.0.26

3 years ago

0.0.25

3 years ago

0.0.24

3 years ago

0.0.23

3 years ago

0.0.22

3 years ago

0.0.21

3 years ago

0.0.20

3 years ago

0.0.19

3 years ago

0.0.18

3 years ago

0.0.17

3 years ago

0.0.16

3 years ago

0.0.15

3 years ago

0.0.14

3 years ago

0.0.13

3 years ago

0.0.12

3 years ago

0.0.11

3 years ago

0.0.10

3 years ago

0.0.9

3 years ago

0.0.8

3 years ago

0.0.7

3 years ago

0.0.6

3 years ago

0.0.5

3 years ago

0.0.4

3 years ago

0.0.3

3 years ago

0.0.2

3 years ago

0.0.1

3 years ago