vec-la v1.5.0
vec
Tiny linear algebra library specifically for 2d.
See it in action: https://codepen.io/fstokesman/pen/aWgEXv
Installation
npm install --save vec-la
and import or require as needed. If you need to use a standalone windowed version in a script tag:
<script src="node_modules/vec-la/dist/vec.window.js"></script>
Features
- Immutable functions for manipulating vectors
- Vectors and matrices represented as pure, single dimensional arrays
- Immutable Matrix builder helper object for sequentially composing matrices
API
vec.add(v, v2): Result of addingvandv2vec.sub(v, v2): Result of subtractingv2fromvvec.scale(v, sc): Result of multiplying components ofvbyscvec.midpoint(v, v2): Midpoint betweenvandv2vec.norm(v): Result of normalisingvvec.mag(v): Magnitude ofvvec.normal(v): Normal vector ofvvec.towards(v, v2, t): A point in the interval v, v2 along the direction formed fromv2 - v1.tis a normalalised percentage 0, 1 of where in the interval the point falls.vec.rotate(v, a): Result of rotatingvaround the origin byaradiansvec.rotatePointAround(v, cp, a): Result of rotatingvaroundcpbyaradiansvec.dot(v, v2): Dot product ofvandv2vec.det(v): Determinant ofvvec.dist(v, v2): Euclidean distance betweenvandv2vec.matrixBuilder(m): Creates a matrix builder (see below)vec.createMatrix(a, b, c, d, tx, ty): Helper function for matrix creation. Defaults to an identity matrixvec.transform(v, m): Result of applying matrix tranformationmtovvec.composeTransform(m, m2): Result of composing transformation matrixmwithm2
Finally, when using the window version you can call vec.polute() to insert these functions into the global scope with the naming convention:
vFunctionName e.g vAdd, vMidpoint, vDot etc.
Matrix Builder
vec.matrixBuilder(m) creates a builder object that can be used to easily chain together transformations. Call get() on the builder at any time to get a copy of the matrix at that point.
const mb = vec.matrixBuilder(); // Defaults to identity matrix
const finalMatrix = mb
.rotate(Math.PI/6)
.scale(2, 3)
.shear(0.2, 0)
.translate(20, 40)
.get();
// [
// 2.0320508075688775, -0.48038475772933664, 20,
// 1.4999999999999998, 2.598076211353316, 40,
// 0, 0, 1
// ]The function also accepts a matrix as it's argument.
rotate(a): Concatenate a rotation matrix ofaradiansscale(x, y): Concatenate a scaling matrixshear(x, y): Concatenate a shearing matrixtranslate(x, y): Concatenate a translation matrixadd(m): Concatenate an arbitrary matrixget(): Return the resulting matrix
Tests
Clone the repository, and then run npm install && npm test.
Examples
(all examples assume vec is imported under vec)
Addition
const v1 = [0, 1];
const v2 = [1, 0];
const v3 = vec.add(v1, v2); // [1, 1]Scaling
const v1 = [0, 1];
const scaler = 10;
const v2 = vec.scale(v1, scaler); // [0, 10]Normalising
const v1 = [6.32, -23.1];
const v2 = vec.norm(v1); // [0.2638946146581466, -0.9645515187663272]Magnitude
const v1 = [6.32, -23.1];
const mag = vec.mag(v1); // 23.948954048141644Matrix Transform
const v1 = [10, 10];
// Inversion matrix
const m = [
-1, 0, 0
0, -1, 0,
0, 0, 1
];
const v2 = vec.transform(v1, m); // [-10, -10]Computing determinants
const m = [
10, 0, 0,
0, 10, 0,
0, 0, 1
];
const d = vec.det(m); // 100Composing Matrices
const v = [10, 10];
const m = [
0, -1, 0,
-1, 0, 0,
0, 0, 1
];
const m2 = [
Math.cos(Math.PI/2), -Math.sin(Math.PI/2), 0,
Math.sin(Math.PI/2), Math.cos(Math.PI/2) 0,
0, 0, 1
];
const m3 = vec.composeTransform(m2, m);
const v2 = vec.transform(v1, m1); // is the same as
const v3 = vec.transform(vec.transform(v1, m), m2);Motivation
Many linear algebra libraries represent their vectors as object like { x, y, mutableMethod, ... }, which can be cumbersome to work with. Arrays are easier to map, reduce, combine and generally work with symbolically. Additionally, Vec is designed to be used with ES6 and thus the ... rest syntax, and so can easily and cleanly be supplied to functions expecting x and y parameters as sequential arguments.
For example:
ctx.arc(...point, radius, 0, 2 * Math.PI, false);