@aigne/example-mcp-puppeteer v1.13.6
Puppeteer MCP Server Demo
This is a demonstration of using AIGNE Framework and Puppeteer MCP Server to extract content from websites using Puppeteer. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
agent(AI Agent)
puppeteer(Puppeteer MCP Agent)
navigate(Navigate to URL)
evaluate(Evaluate JS)
in --> agent <--> puppeteer
subgraph MCP Agent
puppeteer <--> navigate
puppeteer <--> evaluate
end
agent --> out
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class agent processing
class puppeteer processing
class navigate processing
class evaluate processing
Following is a sequence diagram of the workflow to summarize content from a website:
sequenceDiagram
participant User
participant AI as AI Agent
participant P as Puppeteer MCP Agent
participant N as Navigate to URL
participant E as Evaluate JS
User ->> AI: summarize content from https://www.arcblock.io
AI ->> P: extract content from https://www.arcblock.io
P ->> N: navigate to https://www.arcblock.io
N ->> P: navigation completed
P ->> E: evaluate document.body.innerText
E ->> P: content extracted
E ->> AI: extracted content as context
AI ->> User: The content is as follows: ...
Prerequisites
- Node.js and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-mcp-puppeteer
# Run in interactive chat mode
npx -y @aigne/example-mcp-puppeteer --chat
# Use pipeline input
echo "extract content from https://www.arcblock.io" | npx -y @aigne/example-mcp-puppeteer
Installation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-framework
Install Dependencies
cd aigne-framework/examples/mcp-puppeteer
pnpm install
Setup Environment Variables
Setup your OpenAI API key in the .env.local
file:
OPENAI_API_KEY="" # Set your OpenAI API key here
Run the Example
pnpm start
Run Options
The example supports the following command-line parameters:
Parameter | Description | Default |
---|---|---|
--chat | Run in interactive chat mode | Disabled (one-shot mode) |
--model <provider[:model]> | AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
--temperature <value> | Temperature for model generation | Provider default |
--top-p <value> | Top-p sampling value | Provider default |
--presence-penalty <value> | Presence penalty value | Provider default |
--frequency-penalty <value> | Frequency penalty value | Provider default |
--log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
--input , -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "extract content from https://www.arcblock.io" | pnpm start
Example
The following example demonstrates how to extract content from a website:
import assert from "node:assert";
import { AIAgent, AIGNE, MCPAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const puppeteerMCPAgent = await MCPAgent.from({
command: "npx",
args: ["-y", "@modelcontextprotocol/server-puppeteer"],
});
const aigne = new AIGNE({
model,
skills: [puppeteerMCPAgent],
});
const agent = AIAgent.from({
instructions: `\
## Steps to extract content from a website
1. navigate to the url
2. evaluate document.body.innerText to get the content
`,
});
const result = await aigne.invoke(agent, "extract content from https://www.arcblock.io");
console.log(result);
// output:
// {
// $message: "The content extracted from the website [ArcBlock](https://www.arcblock.io) is as follows:\n\n---\n\n**Redefining Software Architect and Ecosystems**\n\nA total solution for building decentralized applications ...",
// }
await aigne.shutdown();
License
This project is licensed under the MIT License.
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago