1.13.6 • Published 8 months ago

@aigne/example-mcp-puppeteer v1.13.6

Weekly downloads
-
License
MIT
Repository
github
Last release
8 months ago

Puppeteer MCP Server Demo

This is a demonstration of using AIGNE Framework and Puppeteer MCP Server to extract content from websites using Puppeteer. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.

flowchart LR

in(In)
out(Out)
agent(AI Agent)
puppeteer(Puppeteer MCP Agent)
navigate(Navigate to URL)
evaluate(Evaluate JS)

in --> agent <--> puppeteer

subgraph MCP Agent
  puppeteer <--> navigate
  puppeteer <--> evaluate
end

agent --> out

classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;

class in inputOutput
class out inputOutput
class agent processing
class puppeteer processing
class navigate processing
class evaluate processing

Following is a sequence diagram of the workflow to summarize content from a website:

sequenceDiagram
participant User
participant AI as AI Agent
participant P as Puppeteer MCP Agent
participant N as Navigate to URL
participant E as Evaluate JS

User ->> AI: summarize content from https://www.arcblock.io
AI ->> P: extract content from https://www.arcblock.io
P ->> N: navigate to https://www.arcblock.io
N ->> P: navigation completed
P ->> E: evaluate document.body.innerText
E ->> P: content extracted
E ->> AI: extracted content as context
AI ->> User: The content is as follows: ...

Prerequisites

  • Node.js and npm installed on your machine
  • An OpenAI API key for interacting with OpenAI's services
  • Optional dependencies (if running the example from source code):
    • Bun for running unit tests & examples
    • Pnpm for package management

Quick Start (No Installation Required)

export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key

# Run in one-shot mode (default)
npx -y @aigne/example-mcp-puppeteer

# Run in interactive chat mode
npx -y @aigne/example-mcp-puppeteer --chat

# Use pipeline input
echo "extract content from https://www.arcblock.io" | npx -y @aigne/example-mcp-puppeteer

Installation

Clone the Repository

git clone https://github.com/AIGNE-io/aigne-framework

Install Dependencies

cd aigne-framework/examples/mcp-puppeteer

pnpm install

Setup Environment Variables

Setup your OpenAI API key in the .env.local file:

OPENAI_API_KEY="" # Set your OpenAI API key here

Run the Example

pnpm start

Run Options

The example supports the following command-line parameters:

ParameterDescriptionDefault
--chatRun in interactive chat modeDisabled (one-shot mode)
--model <provider[:model]>AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini'openai
--temperature <value>Temperature for model generationProvider default
--top-p <value>Top-p sampling valueProvider default
--presence-penalty <value>Presence penalty valueProvider default
--frequency-penalty <value>Frequency penalty valueProvider default
--log-level <level>Set logging level (ERROR, WARN, INFO, DEBUG, TRACE)INFO
--input, -i <input>Specify input directlyNone

Examples

# Run in chat mode (interactive)
pnpm start -- --chat

# Set logging level
pnpm start -- --log-level DEBUG

# Use pipeline input
echo "extract content from https://www.arcblock.io" | pnpm start

Example

The following example demonstrates how to extract content from a website:

import assert from "node:assert";
import { AIAgent, AIGNE, MCPAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";

const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");

const model = new OpenAIChatModel({
  apiKey: OPENAI_API_KEY,
});

const puppeteerMCPAgent = await MCPAgent.from({
  command: "npx",
  args: ["-y", "@modelcontextprotocol/server-puppeteer"],
});

const aigne = new AIGNE({
  model,
  skills: [puppeteerMCPAgent],
});

const agent = AIAgent.from({
  instructions: `\
## Steps to extract content from a website
1. navigate to the url
2. evaluate document.body.innerText to get the content
`,
});

const result = await aigne.invoke(agent, "extract content from https://www.arcblock.io");

console.log(result);
// output:
// {
//   $message: "The content extracted from the website [ArcBlock](https://www.arcblock.io) is as follows:\n\n---\n\n**Redefining Software Architect and Ecosystems**\n\nA total solution for building decentralized applications ...",
// }

await aigne.shutdown();

License

This project is licensed under the MIT License.

1.13.6

8 months ago

1.13.5

8 months ago

1.13.4

8 months ago

1.13.3

8 months ago

1.13.2

8 months ago

1.13.1

8 months ago

1.13.0

8 months ago

1.12.1

8 months ago

1.12.0

9 months ago

1.11.1

9 months ago

1.11.0

9 months ago

1.10.0

9 months ago

1.9.0

9 months ago

1.8.0

10 months ago

1.7.2

10 months ago

1.7.1

10 months ago

1.6.0

10 months ago

1.5.0

10 months ago

1.4.0

10 months ago

1.3.2

10 months ago

1.3.1

11 months ago