@aigne/example-mcp-sqlite v1.13.6
Sqlite MCP Server Demo
This is a demonstration of using AIGNE Framework and MCP Server SQlite to interact with SQLite databases. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
agent(Agent)
sqlite(SQLite MCP Server)
read_query(Read Query)
write_query(Write Query)
create_table(Create Table)
list_tables(List Tables)
describe_table(Describe Table)
subgraph SQLite MCP Server
sqlite <--> read_query
sqlite <--> write_query
sqlite <--> create_table
sqlite <--> list_tables
sqlite <--> describe_table
end
in --> agent <--> sqlite
agent --> out
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class agent processing
class sqlite processing
class read_query processing
class write_query processing
class create_table processing
class list_tables processing
class describe_table processingFollowing is a sequence diagram of the workflow to interact with an SQLite database:
sequenceDiagram
participant User
participant AI as AI Agent
participant S as SQLite MCP Server
participant R as Read Query
User ->> AI: How many products?
AI ->> S: read_query("SELECT COUNT(*) FROM products")
S ->> R: execute("SELECT COUNT(*) FROM products")
R ->> S: 10
S ->> AI: 10
AI ->> User: There are 10 products in the database.Prerequisites
- Node.js and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- uv python environment for running MCP Server SQlite
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-mcp-sqlite
# Run in interactive chat mode
npx -y @aigne/example-mcp-sqlite --chat
# Use pipeline input
echo "create a product table with columns name description and createdAt" | npx -y @aigne/example-mcp-sqliteInstallation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-frameworkInstall Dependencies
cd aigne-framework/examples/mcp-sqlite
pnpm installSetup Environment Variables
Setup your OpenAI API key in the .env.local file:
OPENAI_API_KEY="" # Set your OpenAI API key hereRun the Example
pnpm start # Run in one-shot mode (default)
# Run in interactive chat mode
pnpm start -- --chat
# Use pipeline input
echo "create a product table with columns name description and createdAt" | pnpm startRun Options
The example supports the following command-line parameters:
| Parameter | Description | Default |
|---|---|---|
--chat | Run in interactive chat mode | Disabled (one-shot mode) |
--model <provider[:model]> | AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
--temperature <value> | Temperature for model generation | Provider default |
--top-p <value> | Top-p sampling value | Provider default |
--presence-penalty <value> | Presence penalty value | Provider default |
--frequency-penalty <value> | Frequency penalty value | Provider default |
--log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
--input, -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "how many products?" | pnpm startExample
The following example demonstrates how to interact with an SQLite database:
import assert from "node:assert";
import { join } from "node:path";
import { AIAgent, AIGNE, MCPAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const sqlite = await MCPAgent.from({
command: "uvx",
args: ["-q", "mcp-server-sqlite", "--db-path", join(process.cwd(), "usages.db")],
});
const aigne = new AIGNE({
model,
skills: [sqlite],
});
const agent = AIAgent.from({
instructions: "You are a database administrator",
});
console.log(
await aigne.invoke(agent, "create a product table with columns name description and createdAt"),
);
// output:
// {
// $message: "The product table has been created successfully with the columns: `name`, `description`, and `createdAt`.",
// }
console.log(await aigne.invoke(agent, "create 10 products for test"));
// output:
// {
// $message: "I have successfully created 10 test products in the database. Here are the products that were added:\n\n1. Product 1: $10.99 - Description for Product 1\n2. Product 2: $15.99 - Description for Product 2\n3. Product 3: $20.99 - Description for Product 3\n4. Product 4: $25.99 - Description for Product 4\n5. Product 5: $30.99 - Description for Product 5\n6. Product 6: $35.99 - Description for Product 6\n7. Product 7: $40.99 - Description for Product 7\n8. Product 8: $45.99 - Description for Product 8\n9. Product 9: $50.99 - Description for Product 9\n10. Product 10: $55.99 - Description for Product 10\n\nIf you need any further assistance or operations, feel free to ask!",
// }
console.log(await aigne.invoke(agent, "how many products?"));
// output:
// {
// $message: "There are 10 products in the database.",
// }
await aigne.shutdown();License
This project is licensed under the MIT License.
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
11 months ago
11 months ago
11 months ago