@aigne/example-workflow-code-execution v1.12.6
Workflow code-execution Demo
This is a demonstration of using AIGNE Framework to build a code-execution workflow. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
coder(Coder)
sandbox(Sandbox)
coder -.-> sandbox
sandbox -.-> coder
in ==> coder ==> out
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class coder processing
class sandbox processingWorkflow of a code-execution between user and coder using a sandbox:
sequenceDiagram
participant User
participant Coder as Agent Coder
participant Sandbox as Agent Sandbox
User ->> Coder: 10! = ?
Coder ->> Sandbox: "function factorial(n) { return n <= 1 ? 1 : n * factorial(n - 1) } factorial(10)"
Sandbox ->> Coder: { result: 3628800 }
Coder ->> User: The value of \(10!\) (10 factorial) is 3,628,800.Prerequisites
- Node.js and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-workflow-code-execution
# Run in interactive chat mode
npx -y @aigne/example-workflow-code-execution --chat
# Use pipeline input
echo "Calculate 15!" | npx -y @aigne/example-workflow-code-executionInstallation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-frameworkInstall Dependencies
cd aigne-framework/examples/workflow-code-execution
pnpm installSetup Environment Variables
Setup your OpenAI API key in the .env.local file:
OPENAI_API_KEY="" # Set your OpenAI API key hereRun the Example
pnpm start # Run in one-shot mode (default)
# Run in interactive chat mode
pnpm start -- --chat
# Use pipeline input
echo "Calculate 15!" | pnpm startRun Options
The example supports the following command-line parameters:
| Parameter | Description | Default |
|---|---|---|
--chat | Run in interactive chat mode | Disabled (one-shot mode) |
--model <provider[:model]> | AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
--temperature <value> | Temperature for model generation | Provider default |
--top-p <value> | Top-p sampling value | Provider default |
--presence-penalty <value> | Presence penalty value | Provider default |
--frequency-penalty <value> | Frequency penalty value | Provider default |
--log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
--input, -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "Calculate 15!" | pnpm startExample
The following example demonstrates how to build a code-execution workflow:
import assert from "node:assert";
import { AIAgent, AIGNE, FunctionAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
import { z } from "zod";
const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const sandbox = FunctionAgent.from({
name: "evaluateJs",
description: "A js sandbox for running javascript code",
inputSchema: z.object({
code: z.string().describe("The code to run"),
}),
process: async (input: { code: string }) => {
const { code } = input;
// biome-ignore lint/security/noGlobalEval: <explanation>
const result = eval(code);
return { result };
},
});
const coder = AIAgent.from({
name: "coder",
instructions: `\
You are a proficient coder. You write code to solve problems.
Work with the sandbox to execute your code.
`,
skills: [sandbox],
});
const aigne = new AIGNE({ model });
const result = await aigne.invoke(coder, "10! = ?");
console.log(result);
// Output:
// {
// $message: "The value of \\(10!\\) (10 factorial) is 3,628,800.",
// }License
This project is licensed under the MIT License.
8 months ago
8 months ago
8 months ago
8 months ago
8 months ago
8 months ago
8 months ago
8 months ago
8 months ago
9 months ago
9 months ago
9 months ago
9 months ago
9 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
11 months ago
11 months ago
11 months ago
11 months ago
11 months ago
11 months ago