@aigne/example-workflow-code-execution v1.12.6
Workflow code-execution Demo
This is a demonstration of using AIGNE Framework to build a code-execution workflow. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
coder(Coder)
sandbox(Sandbox)
coder -.-> sandbox
sandbox -.-> coder
in ==> coder ==> out
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class coder processing
class sandbox processing
Workflow of a code-execution between user and coder using a sandbox:
sequenceDiagram
participant User
participant Coder as Agent Coder
participant Sandbox as Agent Sandbox
User ->> Coder: 10! = ?
Coder ->> Sandbox: "function factorial(n) { return n <= 1 ? 1 : n * factorial(n - 1) } factorial(10)"
Sandbox ->> Coder: { result: 3628800 }
Coder ->> User: The value of \(10!\) (10 factorial) is 3,628,800.
Prerequisites
- Node.js and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-workflow-code-execution
# Run in interactive chat mode
npx -y @aigne/example-workflow-code-execution --chat
# Use pipeline input
echo "Calculate 15!" | npx -y @aigne/example-workflow-code-execution
Installation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-framework
Install Dependencies
cd aigne-framework/examples/workflow-code-execution
pnpm install
Setup Environment Variables
Setup your OpenAI API key in the .env.local
file:
OPENAI_API_KEY="" # Set your OpenAI API key here
Run the Example
pnpm start # Run in one-shot mode (default)
# Run in interactive chat mode
pnpm start -- --chat
# Use pipeline input
echo "Calculate 15!" | pnpm start
Run Options
The example supports the following command-line parameters:
Parameter | Description | Default |
---|---|---|
--chat | Run in interactive chat mode | Disabled (one-shot mode) |
--model <provider[:model]> | AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
--temperature <value> | Temperature for model generation | Provider default |
--top-p <value> | Top-p sampling value | Provider default |
--presence-penalty <value> | Presence penalty value | Provider default |
--frequency-penalty <value> | Frequency penalty value | Provider default |
--log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
--input , -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "Calculate 15!" | pnpm start
Example
The following example demonstrates how to build a code-execution workflow:
import assert from "node:assert";
import { AIAgent, AIGNE, FunctionAgent } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
import { z } from "zod";
const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const sandbox = FunctionAgent.from({
name: "evaluateJs",
description: "A js sandbox for running javascript code",
inputSchema: z.object({
code: z.string().describe("The code to run"),
}),
process: async (input: { code: string }) => {
const { code } = input;
// biome-ignore lint/security/noGlobalEval: <explanation>
const result = eval(code);
return { result };
},
});
const coder = AIAgent.from({
name: "coder",
instructions: `\
You are a proficient coder. You write code to solve problems.
Work with the sandbox to execute your code.
`,
skills: [sandbox],
});
const aigne = new AIGNE({ model });
const result = await aigne.invoke(coder, "10! = ?");
console.log(result);
// Output:
// {
// $message: "The value of \\(10!\\) (10 factorial) is 3,628,800.",
// }
License
This project is licensed under the MIT License.
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago