@aigne/example-workflow-reflection v1.11.6
Workflow Reflection Demo
This is a demonstration of using AIGNE Framework to build a reflection workflow. The example now supports both one-shot and interactive chat modes, along with customizable model settings and pipeline input/output.
flowchart LR
in(In)
out(Out)
coder(Coder)
reviewer(Reviewer)
in --Ideas--> coder ==Solution==> reviewer --Approved--> out
reviewer ==Rejected==> coder
classDef inputOutput fill:#f9f0ed,stroke:#debbae,stroke-width:2px,color:#b35b39,font-weight:bolder;
classDef processing fill:#F0F4EB,stroke:#C2D7A7,stroke-width:2px,color:#6B8F3C,font-weight:bolder;
class in inputOutput
class out inputOutput
class coder processing
class reviewer processing
Prerequisites
- Node.js and npm installed on your machine
- An OpenAI API key for interacting with OpenAI's services
- Optional dependencies (if running the example from source code):
Quick Start (No Installation Required)
export OPENAI_API_KEY=YOUR_OPENAI_API_KEY # Set your OpenAI API key
# Run in one-shot mode (default)
npx -y @aigne/example-workflow-reflection
# Run in interactive chat mode
npx -y @aigne/example-workflow-reflection --chat
# Use pipeline input
echo "Write a function to validate email addresses" | npx -y @aigne/example-workflow-reflection
Installation
Clone the Repository
git clone https://github.com/AIGNE-io/aigne-framework
Install Dependencies
cd aigne-framework/examples/workflow-reflection
pnpm install
Setup Environment Variables
Setup your OpenAI API key in the .env.local
file:
OPENAI_API_KEY="" # Set your OpenAI API key here
Run the Example
pnpm start # Run in one-shot mode (default)
# Run in interactive chat mode
pnpm start -- --chat
# Use pipeline input
echo "Write a function to validate email addresses" | pnpm start
Run Options
The example supports the following command-line parameters:
Parameter | Description | Default |
---|---|---|
--chat | Run in interactive chat mode | Disabled (one-shot mode) |
--model <provider[:model]> | AI model to use in format 'provider:model' where model is optional. Examples: 'openai' or 'openai:gpt-4o-mini' | openai |
--temperature <value> | Temperature for model generation | Provider default |
--top-p <value> | Top-p sampling value | Provider default |
--presence-penalty <value> | Presence penalty value | Provider default |
--frequency-penalty <value> | Frequency penalty value | Provider default |
--log-level <level> | Set logging level (ERROR, WARN, INFO, DEBUG, TRACE) | INFO |
--input , -i <input> | Specify input directly | None |
Examples
# Run in chat mode (interactive)
pnpm start -- --chat
# Set logging level
pnpm start -- --log-level DEBUG
# Use pipeline input
echo "Write a function to validate email addresses" | pnpm start
Example
The following example demonstrates how to build a reflection workflow:
import assert from "node:assert";
import { AIAgent, AIGNE, UserInputTopic, UserOutputTopic } from "@aigne/core";
import { OpenAIChatModel } from "@aigne/core/models/openai-chat-model.js";
import { z } from "zod";
const { OPENAI_API_KEY } = process.env;
assert(OPENAI_API_KEY, "Please set the OPENAI_API_KEY environment variable");
const model = new OpenAIChatModel({
apiKey: OPENAI_API_KEY,
});
const coder = AIAgent.from({
subscribeTopic: [UserInputTopic, "rewrite_request"],
publishTopic: "review_request",
instructions: `\
You are a proficient coder. You write code to solve problems.
Work with the reviewer to improve your code.
Always put all finished code in a single Markdown code block.
For example:
\`\`\`python
def hello_world():
print("Hello, World!")
\`\`\`
Respond using the following format:
Thoughts: <Your comments>
Code: <Your code>
Previous review result:
{{feedback}}
User's question:
{{question}}
`,
outputSchema: z.object({
code: z.string().describe("Your code"),
}),
});
const reviewer = AIAgent.from({
subscribeTopic: "review_request",
publishTopic: (output) => (output.approval ? UserOutputTopic : "rewrite_request"),
instructions: `\
You are a code reviewer. You focus on correctness, efficiency and safety of the code.
The problem statement is: {{question}}
The code is:
\`\`\`
{{code}}
\`\`\`
Previous feedback:
{{feedback}}
Please review the code. If previous feedback was provided, see if it was addressed.
`,
outputSchema: z.object({
approval: z.boolean().describe("APPROVE or REVISE"),
feedback: z.object({
correctness: z.string().describe("Your comments on correctness"),
efficiency: z.string().describe("Your comments on efficiency"),
safety: z.string().describe("Your comments on safety"),
suggested_changes: z.string().describe("Your comments on suggested changes"),
}),
}),
includeInputInOutput: true,
});
const aigne = new AIGNE({ model, agents: [coder, reviewer] });
aigne.publish(UserInputTopic, "Write a function to find the sum of all even numbers in a list.");
const { message } = await aigne.subscribe(UserOutputTopic);
console.log(message);
// Output:
// {
// code: "def sum_of_even_numbers(numbers):\n \"\"\"Function to calculate the sum of all even numbers in a list.\"\"\"\n return sum(number for number in numbers if number % 2 == 0)",
// approval: true,
// feedback: {
// correctness: "The function correctly calculates the sum of all even numbers in the given list. It properly checks for evenness using the modulus operator and sums the valid numbers.",
// efficiency: "The implementation is efficient as it uses a generator expression which computes the sum in a single pass over the list. This minimizes memory usage as compared to creating an intermediate list of even numbers.",
// safety: "The function does not contain any safety issues. However, it assumes that all elements in the input list are integers. It would be prudent to handle cases where the input contains non-integer values (e.g., None, strings, etc.).",
// suggested_changes: "Consider adding type annotations to the function for better clarity and potential type checking, e.g. `def sum_of_even_numbers(numbers: list[int]) -> int:`. Also, include input validation to ensure 'numbers' is a list of integers.",
// },
// }
License
This project is licensed under the MIT License.
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
4 months ago
5 months ago
5 months ago
5 months ago
5 months ago
5 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago
7 months ago