3.2.0 • Published 6 months ago
@cloudwerxlab/gpt-image-1-mcp v3.2.0
🚀 Quick Start
npx -y @cloudwerxlab/gpt-image-1-mcp
📋 Prerequisites
🔑 Environment Variables
💻 Example Usage with NPX
# Set your OpenAI API key
export OPENAI_API_KEY=sk-your-openai-api-key
# Optional: Set custom output directory
export GPT_IMAGE_OUTPUT_DIR=/home/username/Pictures/ai-generated-images
# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
# Set your OpenAI API key
$env:OPENAI_API_KEY = "sk-your-openai-api-key"
# Optional: Set custom output directory
$env:GPT_IMAGE_OUTPUT_DIR = "C:\Users\username\Pictures\ai-generated-images"
# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
:: Set your OpenAI API key
set OPENAI_API_KEY=sk-your-openai-api-key
:: Optional: Set custom output directory
set GPT_IMAGE_OUTPUT_DIR=C:\Users\username\Pictures\ai-generated-images
:: Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
🔌 Integration with MCP Clients
🛠️ Setting Up in an MCP Client
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": [
"-y",
"@cloudwerxlab/gpt-image-1-mcp"
],
"env": {
"OPENAI_API_KEY": "PASTE YOUR OPEN-AI KEY HERE",
"GPT_IMAGE_OUTPUT_DIR": "OPTIONAL: PATH TO SAVE GENERATED IMAGES"
}
}
}
}
Example Configurations for Different Operating Systems
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "C:\\Users\\username\\Pictures\\ai-generated-images"
}
}
}
}
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "/home/username/Pictures/ai-generated-images"
}
}
}
}
Note: For Windows paths, use double backslashes (
\\
) to escape the backslash character in JSON. For Linux/macOS, use forward slashes (/
).
✨ Features
💡 Enhanced Capabilities
🔄 How It Works
📁 Output Directory Behavior
Installation & Usage
NPM Package
This package is available on npm: @cloudwerxlab/gpt-image-1-mcp
You can install it globally:
npm install -g @cloudwerxlab/gpt-image-1-mcp
Or run it directly with npx as shown in the Quick Start section.
Tool: create_image
Generates a new image based on a text prompt.
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
prompt | string | Yes | The text description of the image to generate (max 32,000 chars) |
size | string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality | string | No | Image quality: "high" (default), "medium", or "low" |
n | integer | No | Number of images to generate (1-10, default: 1) |
background | string | No | Background style: "transparent", "opaque", or "auto" (default) |
output_format | string | No | Output format: "png" (default), "jpeg", or "webp" |
output_compression | integer | No | Compression level (0-100, default: 0) |
user | string | No | User identifier for OpenAI usage tracking |
moderation | string | No | Moderation level: "low" or "auto" (default) |
Example
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image</tool_name>
<arguments>
{
"prompt": "A futuristic city skyline at sunset, digital art",
"size": "1024x1024",
"quality": "high",
"n": 1,
"background": "auto"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the generated image(s)
- The image(s) as base64-encoded data
- Metadata including token usage and file paths
Tool: create_image_edit
Edits an existing image based on a text prompt and optional mask.
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
image | string, object, or array | Yes | The image(s) to edit (base64 string or file path object) |
prompt | string | Yes | The text description of the desired edit (max 32,000 chars) |
mask | string or object | No | The mask that defines areas to edit (base64 string or file path object) |
size | string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality | string | No | Image quality: "high" (default), "medium", or "low" |
n | integer | No | Number of images to generate (1-10, default: 1) |
background | string | No | Background style: "transparent", "opaque", or "auto" (default) |
user | string | No | User identifier for OpenAI usage tracking |
Example with Base64 Encoded Image
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": "BASE64_ENCODED_IMAGE_STRING",
"prompt": "Add a small robot in the corner",
"mask": "BASE64_ENCODED_MASK_STRING",
"quality": "high"
}
</arguments>
</use_mcp_tool>
Example with File Path
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": {
"filePath": "C:/path/to/your/image.png"
},
"prompt": "Add a small robot in the corner",
"mask": {
"filePath": "C:/path/to/your/mask.png"
},
"quality": "high"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the edited image(s)
- The edited image(s) as base64-encoded data
- Metadata including token usage and file paths
🔧 Troubleshooting
🚨 Common Issues
🔍 Error Handling and Reporting
The MCP server includes comprehensive error handling that provides detailed information when something goes wrong. When an error occurs:
Error Format: All errors are returned with:
- A clear error message describing what went wrong
- The specific error code or type
- Additional context about the error when available
AI Assistant Behavior: When using this MCP server with AI assistants:
- The AI will always report the full error message to help with troubleshooting
- The AI will explain the likely cause of the error in plain language
- The AI will suggest specific steps to resolve the issue