@keywordsai/tracing v1.0.25
KeywordsAI Tracing SDK
A lightweight OpenTelemetry-based tracing SDK for KeywordsAI, built with minimal dependencies and optional instrumentation support. Inspired by Openllmetry
Features
- Lightweight Core: Minimal dependencies for browser and Node.js compatibility
- Optional Instrumentations: Install only the instrumentations you need
- OpenTelemetry Native: Built directly on OpenTelemetry without wrapper dependencies
- Decorator Pattern: Easy-to-use decorators for workflows, tasks, agents, and tools
- Dynamic Loading: Instrumentations are loaded on-demand
- Manual Instrumentation: Support for manual instrumentation (Next.js compatible)
Installation
Core Package
npm install @keywordsai/tracingOptional Instrumentations
Install only the instrumentations you need:
# OpenAI
npm install @traceloop/instrumentation-openai
# Anthropic
npm install @traceloop/instrumentation-anthropic
# Azure OpenAI
npm install @traceloop/instrumentation-azure
# AWS Bedrock
npm install @traceloop/instrumentation-bedrock
# Cohere
npm install @traceloop/instrumentation-cohere
# LangChain
npm install @traceloop/instrumentation-langchain
# LlamaIndex
npm install @traceloop/instrumentation-llamaindex
# Vector Databases
npm install @traceloop/instrumentation-pinecone
npm install @traceloop/instrumentation-chromadb
npm install @traceloop/instrumentation-qdrant
# Other providers
npm install @traceloop/instrumentation-together
npm install @traceloop/instrumentation-vertexaiQuick Start
Method 1: Dynamic Instrumentation (Recommended for Node.js)
import { KeywordsAITelemetry } from '@keywordsai/tracing';
import OpenAI from 'openai';
// Initialize the SDK
const keywordsAi = new KeywordsAITelemetry({
apiKey: process.env.KEYWORDS_AI_API_KEY,
baseUrl: process.env.KEYWORDS_AI_BASE_URL,
appName: 'my-app'
});
// Enable instrumentations you need
await keywordsAi.enableInstrumentation('openai');
const openai = new OpenAI();
// Use decorators to trace your functions
const generateJoke = async () => {
return await keywordsAi.withTask(
{ name: 'joke_generation' },
async () => {
const completion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Tell me a joke' }],
model: 'gpt-3.5-turbo'
});
return completion.choices[0].message.content;
}
);
};Method 2: Manual Instrumentation (Recommended for Next.js)
import { KeywordsAITelemetry } from '@keywordsai/tracing';
import OpenAI from 'openai';
import Anthropic from '@anthropic-ai/sdk';
// Manual instrumentation - pass the actual imported modules
const keywordsAi = new KeywordsAITelemetry({
apiKey: process.env.KEYWORDS_AI_API_KEY,
baseUrl: process.env.KEYWORDS_AI_BASE_URL,
appName: 'my-app',
// Specify modules to instrument manually
instrumentModules: {
openAI: OpenAI,
anthropic: Anthropic,
// Add other modules as needed
}
});
// Wait for initialization (optional but recommended)
await keywordsAi.initialize();
// Create clients - they will be automatically instrumented
const openai = new OpenAI();
const anthropic = new Anthropic();
// Use decorators to trace your functions
const generateContent = async () => {
return await keywordsAi.withWorkflow(
{ name: 'content_generation', version: 1 },
async () => {
const result = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Generate content' }],
model: 'gpt-3.5-turbo'
});
return result.choices[0].message.content;
}
);
};When to Use Each Method
Dynamic Instrumentation
- Best for: Standard Node.js applications, serverless functions
- Pros: Simple setup, automatic loading
- Cons: May not work in all bundling environments
Manual Instrumentation
- Best for: Next.js, Webpack bundled apps, environments with import restrictions
- Pros: Works in all environments, explicit control, better for tree-shaking
- Cons: Requires importing modules explicitly
API Reference
KeywordsAITelemetry
Constructor Options
interface KeywordsAIOptions {
appName?: string; // App name for traces
apiKey?: string; // KeywordsAI API key
baseUrl?: string; // KeywordsAI base URL
disableBatch?: boolean; // Disable batching for development
logLevel?: "debug" | "info" | "warn" | "error";
traceContent?: boolean; // Log prompts and completions
tracingEnabled?: boolean; // Enable/disable tracing
silenceInitializationMessage?: boolean;
// Manual instrumentation modules
instrumentModules?: {
openAI?: typeof OpenAI;
anthropic?: typeof Anthropic;
azureOpenAI?: typeof AzureOpenAI;
cohere?: typeof Cohere;
bedrock?: typeof BedrockRuntime;
google_vertexai?: typeof VertexAI;
google_aiplatform?: typeof AIPlatform;
pinecone?: typeof Pinecone;
together?: typeof Together;
langchain?: {
chainsModule?: typeof ChainsModule;
agentsModule?: typeof AgentsModule;
toolsModule?: typeof ToolsModule;
runnablesModule?: typeof RunnableModule;
vectorStoreModule?: typeof VectorStoreModule;
};
llamaIndex?: typeof LlamaIndex;
chromadb?: typeof ChromaDB;
qdrant?: typeof Qdrant;
};
}Methods
initialize(): Manually initialize tracing (returns Promise)isInitialized(): Check if tracing has been initializedenableInstrumentation(name: string): Enable a specific instrumentation (dynamic method)enableInstrumentations(names: string[]): Enable multiple instrumentations (dynamic method)shutdown(): Flush and shutdown tracing
Decorators
withWorkflow
Trace high-level workflows:
await keywordsAi.withWorkflow(
{ name: 'my_workflow', version: 1 },
async () => {
// Your workflow logic
}
);withTask
Trace individual tasks:
await keywordsAi.withTask(
{ name: 'my_task' },
async () => {
// Your task logic
}
);withAgent
Trace agent operations:
await keywordsAi.withAgent(
{ name: 'my_agent', associationProperties: { type: 'assistant' } },
async () => {
// Your agent logic
}
);withTool
Trace tool usage:
await keywordsAi.withTool(
{ name: 'my_tool' },
async () => {
// Your tool logic
}
);Decorator Configuration
interface DecoratorConfig {
name: string; // Required: Name of the operation
version?: number; // Optional: Version number
associationProperties?: Record<string, string>; // Optional: Additional metadata
traceContent?: boolean; // Optional: Override trace content setting
inputParameters?: unknown[]; // Optional: Custom input parameters
suppressTracing?: boolean; // Optional: Suppress tracing for this operation
}Available Instrumentations
The following instrumentations can be enabled dynamically:
openai- OpenAI API callsanthropic- Anthropic API callsazure- Azure OpenAI API callsbedrock- AWS Bedrock API callscohere- Cohere API callslangchain- LangChain operationsllamaindex- LlamaIndex operationspinecone- Pinecone vector databasechromadb- ChromaDB vector databaseqdrant- Qdrant vector databasetogether- Together AI API callsvertexai- Google Vertex AI API calls
Environment Variables
KEYWORDS_AI_API_KEY: Your KeywordsAI API keyKEYWORDS_AI_BASE_URL: KeywordsAI base URL (default: https://api.keywordsai.co)KEYWORDS_AI_APP_NAME: Default app nameKEYWORDS_AI_TRACE_CONTENT: Enable/disable content tracing (default: true)
Browser Compatibility
The core package is designed to work in both Node.js and browser environments. However, some instrumentations may be Node.js only.
License
Apache-2.0
7 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
10 months ago
11 months ago
12 months ago
12 months ago
12 months ago
12 months ago
12 months ago
12 months ago
12 months ago
12 months ago