@stdlib/stats-base-dists-cauchy-quantile v0.2.2
Quantile Function
Cauchy distribution quantile function.
The quantile function for a Cauchy random variable is
for 0 <= p <= 1, where x0 is the location parameter and gamma > 0 is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-cauchy-quantileUsage
var quantile = require( '@stdlib/stats-base-dists-cauchy-quantile' );quantile( p, x0, gamma )
Evaluates the quantile function for a Cauchy distribution with parameters x0 (location parameter) and gamma > 0 (scale parameter).
var y = quantile( 0.5, 0.0, 1.0 );
// returns 0.0
y = quantile( 0.2, 4.0, 2.0 );
// returns ~1.247
y = quantile( 0.9, 4.0, 2.0 );
// returns ~10.155If provided a probability p outside the interval [0,1], the function returns NaN.
var y = quantile( 1.9, 0.0, 1.0 );
// returns NaN
y = quantile( -0.1, 0.0, 1.0 );
// returns NaNIf provided NaN as any argument, the function returns NaN.
var y = quantile( NaN, 0.0, 1.0 );
// returns NaN
y = quantile( 0.0, NaN, 1.0 );
// returns NaN
y = quantile( 0.0, 0.0, NaN );
// returns NaNIf provided gamma <= 0, the function returns NaN.
var y = quantile( 0.4, 0.0, -1.0 );
// returns NaN
y = quantile( 0.4, 0.0, 0.0 );
// returns NaNquantile.factory( x0, gamma )
Returns a function for evaluating the quantile function of a Cauchy distribution with location parameter x0 and scale parameter gamma > 0.
var myquantile = quantile.factory( 10.0, 2.0 );
var y = myquantile( 0.2 );
// returns ~7.247
y = myquantile( 0.8 );
// returns ~12.753Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var quantile = require( '@stdlib/stats-base-dists-cauchy-quantile' );
var gamma;
var x0;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
x0 = ( randu()*10.0 ) - 5.0;
gamma = ( randu()*20.0 ) + EPS;
y = quantile( p, gamma, x0 );
console.log( 'p: %d, x0: %d, γ: %d, Q(p;x0,γ): %d', p.toFixed(4), x0.toFixed(4), gamma.toFixed(4), y.toFixed(4) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.